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Automatic Deduction in Geometry

Algebraic methods

Gröbner bases [Kap86]

[Pot08, GPT10] [CW07]

Wu’s method [Wu78, Cho85, Cho88, Wan01, Wan04]

Geometric Algebra [LW00]

[FT11]

Synthetic

Gelernter [Gel59]

Deductive database [cCsGzZ00]

The area method [CGZ94]

[Nar04, JNQ10]

Full angle method [CGZ96]
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Formalization of Geometry in Coq

Projective Geometry [MNS09]

High-school Geometry [Gui04, PBN11]

Hilbert’s Geometry [DDS00]

Tarski’s Geometry [Nar08, BN12]

Narboux (UdS) Representation Change in the Formalization of Geometry in Coq 2012 3 / 47



Formalization of Geometry in Coq

High School Geometry

Mass Point
Axiom System

Mass Point Method

Area Method

Chou-Gao-Zhang
Axiom System

Wu's Method

R²

Gröbner basis Method

Hilbert's
Axiom System

Tarski's
Axiom System

Tarski's
Axiom System



Outline

1 Change of representation

2 Link between axiom systems
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Example of change of representation

Hilbert style world Tarski’s or algebräıc world
Point Point
Line Pair of distinct points
Circle Pair of distinct points
‖:: Line → Line → Prop ‖: Point4 → Prop
⊥:: Line → Line → Prop ⊥: Point4 → Prop

How to translate a statement from one language to the other one ?
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Definition of the defining points of circles and lines

GeoProof Construction Defining points
l passing through A and B P1(l) = A P2(l) = B
l parallel line to m passing through A P1(l) = A P2(l) = P2l
l perpendicular line to m passing through A P1(l) = A P2(l) = P2l
l perpendicular bisector of A and B P1(l) = P1l P2(l) = P2l
l bisector of the angle formed by A, B and C P1(l) = B P2(l) = P2l
c circle of center O passing through A O(c) = O P(c) = A
c circle whose diameter is AB O(c) = Oc P(c) = A

Narboux (UdS) Representation Change in the Formalization of Geometry in Coq 2012 7 / 47



GeoProof Construction Predicate form
Free point true

Point P on line l collinear(P,P1(l),P2(l))

Point P on circle c O(c)P(c) = PO(c)

I midpoint of A and B IA = IB ∧ collinear(I ,A,B)

I intersection of l1 and l2

collinear(I ,P1(l1),P2(l1))∧
collinear(I ,P1(l2),P2(l2))∧
¬parallel(P1(l1),P2(l1),P1(l2),P2(l2))

I an intersection of c1 and c2

IO(c1) = O(c1)P(c1)∧
IO(c2) = O(c2)P(c2)∧
¬isotropic(O(c1),O(c2))

I an intersection of c and l
IO(c) = O(c)P(c)∧
collinear(I ,P1(l),P2(l))∧
¬isotropic(P1(l),P2(l))

l passing through A and B A 6= B

l parallel to m passing through
A

parallel(A,P2(l),P1(m),P2(m))∧
A 6= P2(l)

l perpendicular to m passing
through A

perpendicular(A,P2(l),P1(m),P2(m))∧
A 6= P2(l)

l perpendicular bisector of A
and B

P1(l)A = P1(l)B ∧ P2(l)A = P2(l)B∧
P1(l) 6= P2(l) ∧ A 6= B

l bisector of the angle A,B,C
eq angle(A,B,P2(l),P2(l),B,C )∧
B 6= P2(l) ∧ A 6= B ∧ B 6= C

c circle of center O passing
through A

true

c circle whose diameter is A B
collinear(O(c),A,B)∧
O(c)A = O(c)B



Questions

How to be convinced that this transformation is correct ?

How to build a tactic which performs this transformation ?

using an adhoc tactic written in Ltac
using a correct by construction approach

Narboux (UdS) Representation Change in the Formalization of Geometry in Coq 2012 9 / 47



Type classes

A way to formalize algebraic structures/ axiom systems/ generic interfaces.
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Example: Monoid

Definition

A monoid is a mathematical structure composed of :

A carrier A

A binary, associative operation . on A

A neutral element 1 ∈ A for .
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Type class definition

Class Monoid {A:Type}(dot : A -> A -> A)(unit : A)

: Type := {

dot_assoc : forall x y z:A,

dot x (dot y z)= dot (dot x y) z;

unit_left : forall x, dot unit x = x;

unit_right : forall x, dot x unit = x }.

Remark

Behind the scene classes are implemented using records.
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Power

A general definition of power

Fixpoint power ‘{M :Monoid A dot one}(a:A)(n:nat) :=

match n with 0%nat => one

| S p => dot a (power a p)

end.
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Formalization of signature/logic (Jérémie Koenig)

Class Contextes := context : Type.

Class Formulas ‘{Ctx : Contexts} := formula:context → Type

Class ExtendFormula ‘{F : Formulas} ‘{Cle : Le context} :=

extend_formula :

∀ (Γ Γ’ : context) {HΓ : PropHolds (Γ ≤ Γ’)},
formula Γ → formula Γ’.

Notation "φ ↑ Γ" := (extend_formula _ Γ φ) (at level 40).
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Valuations

Class Sat ‘{F : !Formulas} :=

sat :> ∀ {Γ} I {HI : PropHolds (well_formed Γ I)},

Denotation (formula Γ) Prop.
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Sortes, Termes, . . .

Class Sorts :=

sort : Set.

Class Terms ‘{Contexts} ‘{Sorts} :=

term : context → sort → Type.
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Interpretation

Class Carriers ‘{S : Sorts} :=

carrier :> Denotation sort Type.

Class Interpretation ‘{S : Sorts}

‘{T : !Terms}

‘{E : !Carriers} :=

value :> ∀ {Γ} I {HI : PropHolds (well_formed Γ I)},

∀ {s : sort}, Denotation (term Γ s) [[s]].
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In the future

Define the two signatures.

Define the translation.

Show that the translation preserves satisfiability.
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Tarski’s axiom system

11 axioms

dimension of the space can be changed easily

many proofs do not use Euclidean axiom

most axioms have been shown to be independent from the
others [Gup65]
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Motivations

for education we need the concept of lines, half-lines, angle,. . .

Hilbert’s axioms are higher level.
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Tarski’s axiom system

Identity β A B A⇒ (A = B)
Pseudo-Transitivity AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Symmetry AB ≡ BA
Identity AB ≡ CC ⇒ A = B

Pasch β A P C ∧ β B Q C ⇒ ∃X , β P X B ∧ β Q X A
Euclid ∃XY , β A D T ∧ β B D C ∧ A 6= D ⇒

β A B X ∧ β A C Y ∧ β X T Y

5 segments
AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧
AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧
β A B C ∧ β A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Construction ∃E , β A B E ∧ BE ≡ CD
Lower Dimension ∃ABC ,¬β A B C ∧ ¬β B C A ∧ ¬β C A B
Upper Dimension AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q

⇒ β A B C ∨ β B C A ∨ β C A B
Continuity ∀XY , (∃A, (∀xy , x ∈ X ∧ y ∈ Y ⇒ β A x y))⇒

∃B, (∀xy , x ∈ X ⇒ y ∈ Y ⇒ β x B y).
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Tarski’s axiom system in Coq

Class Tarski := {

Tpoint : Type;

Bet : Tpoint -> Tpoint -> Tpoint -> Prop;

Cong : Tpoint -> Tpoint -> Tpoint -> Tpoint -> Prop;

between_identity : forall A B, Bet A B A -> A=B;

cong_pseudo_reflexivity : forall A B : Tpoint, Cong A B B A;

cong_identity : forall A B C : Tpoint, Cong A B C C -> A = B;

cong_inner_transitivity : forall A B C D E F : Tpoint,

Cong A B C D -> Cong A B E F -> Cong C D E F;

inner_pasch : forall A B C P Q : Tpoint,

Bet A P C -> Bet B Q C -> exists x, Bet P x B /\ Bet Q x A;

euclid : forall A B C D T : Tpoint,

Bet A D T -> Bet B D C -> A<>D ->

exists x, exists y, Bet A B x /\ Bet A C y /\ Bet x T y;

five_segments : forall A A’ B B’ C C’ D D’ : Tpoint,

Cong A B A’ B’ -> Cong B C B’ C’ -> Cong A D A’ D’ -> Cong B D B’ D’ ->

Bet A B C -> Bet A’ B’ C’ -> A <> B -> Cong C D C’ D’;

segment_construction : forall A B C D : Tpoint,

exists E : Tpoint, Bet A B E /\ Cong B E C D;

lower_dim : exists A, exists B, exists C, ~ (Bet A B C \/ Bet B C A \/ Bet C A B);

upper_dim : forall A B C P Q : Tpoint,

P <> Q -> Cong A P A Q -> Cong B P B Q -> Cong C P C Q ->

(Bet A B C \/ Bet B C A \/ Bet C A B)

}
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Hilbert’s axiom system

Hilbert axiom system is based on two abstract types: points and lines

Point : Type

Line : Type

We assume that the type Line is equipped with an equivalence relation
EqL which denotes equality between lines:

EqL : Line -> Line -> Prop

EqL_Equiv : Equivalence EqL

We do not use Leibniz equality (the built-in equality of Coq), because
when we will define the notion of line inside Tarski’s system, the equality
will be a defined notion.
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Incidence Axioms I

Axiom (I 1)

For every two distinct points A, B there exist a line l such that A and B
are incident to l .

line_existence : forall A B, A<>B ->

exists l, Incid A l /\ Incid B l;

Axiom (I 2)

For every two distinct points A, B there exist at most one line l such that
A and B are incident to l .

line_unicity : forall A B l m, A <> B ->

Incid A l -> Incid B l -> Incid A m -> Incid B m -> EqL l m;
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Incidence Axioms II

Axiom (I 3)

There exist at least two points on a line. There exist at least three points
that do not lie on a line.

two_points_on_line : forall l, exists A, exists B,

Incid B l /\ Incid A l /\ A <> B

ColH A B C := exists l, Incid A l /\ Incid B l /\ Incid C l

plan : exists A, exists B, exists C, ~ ColH A B C
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Order Axioms I

BetH : Point -> Point -> Point -> Prop

Axiom (II 1)

If a point B lies between a point A and a point C then the point A,B,C are
three distinct points through of a line, and B also lies between C and A.

between_col : forall A B C:Point, BetH A B C -> ColH A B C

between_comm: forall A B C:Point, BetH A B C -> BetH C B A

Axiom (II 2)

For two distinct points A and B, there always exists at least one point C
on line AB such that B lies between A and C .

between_out : forall A B : Point,

A <> B -> exists C : Point, BetH A B C
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Order Axioms II

Axiom (II 3)

Of any three distinct points situated on a straight line, there is always one
and only one which lies between the other two.

between_only_one : forall A B C : Point,

BetH A B C -> ~ BetH B C A /\ ~ BetH B A C

between_one : forall A B C, A<>B -> A<>C -> B<>C ->

ColH A B C -> BetH A B C \/ BetH B C A \/ BetH B A C
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Order Axioms III

Axiom (II 4 - Pasch)

Let A, B and C be three points that do not lie in a line and let a be a line
(in the plane ABC ) which does not meet any of the points A, B, C. If the
line a passes through a point of the segment AB, it also passes through a
point of the segment AC or through a point of the segment BC .

To give a formal definition for this axiom we need an extra definition:

cut l A B := ~Incid A l /\ ~Incid B l /\

exists I, Incid I l /\ BetH A I B

pasch : forall A B C l, ~ColH A B C -> ~Incid C l ->

cut l A B -> cut l A C \/ cut l B C
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Parallels

Para l m := ~ exists X, Incid X l /\ Incid X m;

euclid_existence : forall l P, ~ Incid P l ->

exists m, Para l m;

euclid_unicity : forall l P m1 m2, ~ Incid P l ->

Para l m1 -> Incid P m1 ->

Para l m2 -> Incid P m2 ->

EqL m1 m2;
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Congruence Axioms I

Axiom (IV 1)

If A, B are two points on a straight line a, and if A′ is a point upon the
same or another straight line a′, then, upon a given side of A′ on the
straight line a′, we can always find one and only one point B ′ so that the
segment AB is congruent to the segment A′B ′. We indicate this relation
by writing AB ≡ A′B ′.

cong_existence : forall A B l M, A <> B -> Incid M l ->

exists A’, exists B’, Incid A’ l /\ Incid B’ l /\

BetH A’ M B’ /\ CongH M A’ A B /\ CongH M B’ A B

cong_unicity : forall A B l M A’ B’ A’’ B’’,A<>B -> Incid M l ->

Incid A’ l -> Incid B’ l ->

BetH A’ M B’ -> CongH M A’ A B -> CongH M B’ A B ->

Incid A’’ l -> Incid B’’ l ->

BetH A’’ M B’’ -> CongH M A’’ A B -> CongH M B’’ A B ->

(A’ = A’’ /\ B’ = B’’) \/ (A’ = B’’ /\ B’ = A’’)
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Congruence Axioms II

Axiom (IV 2)

If a segment AB is congruent to the segment A′B ′ and also to the
segment A′′B ′′, then the segment A′B ′ is congruent to the segment A′′B ′′.

cong_pseudo_transitivity : forall A B A’ B’ A’’ B’’,

CongH A B A’ B’ -> CongH A B A’’ B’’ -> CongH A’ B’ A’’ B’’
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Congruence Axioms III

Axiom (IV 3)

Let AB and BC be two segments of a straight line a which have no points
in common aside from the point B, and, furthermore, let A′B ′ and B ′C ′

be two segments of the same or of another straight line a′ having, likewise,
no point other than B ′ in common. Then, if AB ≡ A′B ′ and BC ≡ B ′C ′,
we have AC ≡ A′C ′.

Definition disjoint A B C D :=

~ exists P, Between_H A P B /\ Between_H C P D.

addition: forall A B C A’ B’ C’,

ColH A B C -> ColH A’ B’ C’ ->

disjoint A B B C -> disjoint A’ B’ B’ C’ ->

CongH A B A’ B’ -> CongH B C B’ C’ -> CongH A C A’ C’
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Congruence Axioms III

Axiom (IV-4)

Given an angle α, an half-line h emanating from a point O and given a
point P, not on the line generated by h, there is a unique half-line h′

emanating from O, such as the angle α′ defined by (h,O, h′) is congruent
with α and such every point inside α′ and P are on the same side
relatively to the line generated by h.

Axiom (IV 5)

If the following congruences hold AB ≡ A′B ′, AC ≡ A′C ′,
]BAC ≡ ]B ′A′C ′ then ]ABC ≡ ]A′B ′C ′
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Hilbert follows from Tarski

We need to define the concept of line:

Record Couple {A:Type} : Type :=

build_couple {P1: A ; P2 : A ; Cond: P1 <> P2}.

Definition Line := @Couple Tpoint.

Definition Eq : relation Line :=

fun l m => forall X, Incident X l <-> Incident X m.
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Main result

Section Hilbert_to_Tarski.

Context ‘{T:Tarski}.

Instance Hilbert_follow_from_Tarski : Hilbert.

Proof.

... (* omitted here *)

Qed.

End Hilbert_to_Tarski.
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Overview

Chapter 2: betweness properties

Chapter 3: congruence properties

Chapter 4: properties of betweeness and congruence

Chapter 5: order relation over pair of points

Chapter 6: the ternary relation out

Chapter 7: property of the midpoint

Chapter 8: orthogonality lemmas

Chapter 9: position of two points relatively to a line

Chapter 10: orthogonal symmetry

Chapter 11: properties about angles

Chapter 12: parallelism
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Statistics

Chapter lemmas lines of
specifi-
cation

lines
of
proof

Betweeness properties 16 69 111
Congruence properties 16 54 116
Properties of betweeness and congruence 19 151 183
Order relation over pair of points 17 88 340
The ternary relation out 22 103 426
Property of the midpoint 21 101 758
Orthogonality lemmas 77 191 2412
Position of two points relatively to a line 37 145 2333
Orthogonal symmetry 44 173 2712
Properties about angles 187 433 10612
Parallelism 68 163 3560
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Conclusion

Clear foundations for geometry

Next step: define analytic geometry inside Tarski.

Proof of correctness for ADG
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Questions ?
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