About

the Lebesgue's method and RCconstructibilty

Pascal Schireck
IGGLSIIT
UMR CNRS 7005

Exact solutions in GCS

An exact solution of a constraint system is a formal (symbolic) object f one can prove that f satisfies the constraints

An exact solution f is usefull if

it is usable to compute other informations
one can compute controlled real approximations of f
fis expressed with a set of basic operations
Examples
algebiaic equations and radicals. $\sqrt[p]{x}$
geometric constructionsand sule and compass operations

Plan

1-RC-constructibility

2- Computability of a field,RP-computability and factorization
: 3 - RP-computability and field extensions

4-Lebeguel's method

-5-Conclusion
$\because: \because \pi x+i x$

Rule and compass constructions

basic operations (considered as exact operations)
drawing a line passing through two points
drawing a circle whose radius is given by two points
considering the intersection(s) of lines and circles
it is not so easy to see if a GC-system is RC -constructible or not
-angle trissection
tesquaring the circle
(open problems during $\div 2000$ years)

Cramer-Castillon 's problem (1742)

Given a circle Γ and three points A, B and C (out of Γ).

Construct points M, N and P on circle Γ such that
$-A=M P, B \quad N P$ and
$\therefore C . M N$

CAD problems

Only one of these two problemsils RC-constructible which

Mathematical results

Def: a real is $R C$-constructible (from points $(0,0)$ and $(1,0))$ if it is a coordinate of a RC-constructible point (from points (0,0) and (1,0)).

Thm(Wantzel 1837) : Each RC-constructible number is algebraic over Q and its degree is equal to 2^{k} for some k in \mathbb{N}.

The reverse is false one of theroots of $X^{4}-X-1$ is not $R C$-constructible

Mathematical results (2)

Thm (Gallois ~1870): Let be an algebraic number over $\mathbb{Q}, P(X)$ be its minimal polynomial and K be the splitting field of $P(X)$. Number is $R C$-constructible iff $[K: Q]=2^{k}$ for some k in \mathbb{N}.
an important
consequence:
Thm : Eet be an algebraicnumber over Q is $R C$-constructible iff there is a sequence of fields $L_{02}=L_{n}$ such that $L_{0}=\mathbb{Q}, L_{n}=\mathbb{Q}(\because)$ and $\left[L_{i+1}: L i\right]=2$.
(G. Chen, HaCarrayol, 1992)

How to compuite the splitting fieldof R $R(X)$?

Computability, RP-computability

A computable field is a field $(K,+,$.$) such that operations +,-,$. and $/$ are computable
(there are data structure for K, and algorithms for,,+ ., and//

Def: a field K is $R P$-computable if
it is a computäble field

- and there is an algorithm to compute the roots in K for each polynomiah in K[X].

Examples:

- each finite field is RPP
computảble
Q is $R P_{-}$computable

Factorization

Thm : K is a RP-computable field, iff there is a factorization algorithm in $K[X]$.

Sketch of the
if part is self-evident proof:
Finding degree k factors of $X^{k}+a_{1} X x+\ldots a_{k-1} X+a_{k}$
$P(X): P(X)=Q(X)\left(X+a_{1} X^{k=1}+\ldots+a_{k}\right)+R(X)$
since $R(X)=0$ and coef. rof $R(X)$ are in $K\left[a_{12}, \ldots, a_{k}\right]$ we must have

$$
\int_{x_{k}-1}\left(a_{1}, \ldots, a_{k}\right) \in 0
$$

puting it under

There is an algorithm to solve the se equations th K

RP-computability and field extension

Thm: Let $K \subset F$ be a field extension and v be an element of F. If K is $R P$-computable, $K(v)$ is $R P$-computable too.

constructive proof?
 case where v is transcendant

- computability: each element of $K(\nu)$ is a pair of polynomials over K to, *and / are computable-operations
\&RP-computability this is basically the algorithm used to find the root in \mathbb{Q} of polynomials in $\mathbb{Q}[X]$.

RP-computability and field extension

case where v is algebraic over K
(v is known through its irreducible polynomial P.).

- computability: each element of $K(v)$ is a polynomial in v of degree d ${ }^{\circ} P_{v}-1$,+ * and/are computable.
- RP-computability:

$$
f(X)=0 X^{m}+\ldots, k \text { in } X(v) \quad a_{i, 0} v^{1}+\ldots, a_{i, k-1}
$$

$$
f\left(x_{0}\right)=0-v, v_{1}+{ }^{n}+\left(\beta_{0}, b_{0}\right)=0
$$

all the reductions are
computable

Lebegue's method (~1940)

Thm (1992?): let $P(X)$ be irreducible in $K[X]$. If $P(X)=0$ is solvable using only square radicals, then there is a number r in K such that $P(X)$ is reducible over $K(\sqrt{r})$.

Utilization: let $P(X)$ be an irreducible polynomial over K , let us try to find r and to factorize P
let $Q(X)$ be such a factor, we have :
$Q(X)=X^{k}+m_{1 x}^{k}+\cdots+m_{k}+\sqrt{k}\left(m_{k+1}^{k} \dot{X}^{k}-1+\ldots+m_{2 k}\right) m_{i}, K, K$ by Euclidean division $2 P(X)=Q(X) * T(X)$.

Lebegue's method (suite)

$\{$

all the equations are over K

$A_{k=1}\left(m_{1}, \ldots, m_{2 k}, r\right)=0 \quad m_{1}, m_{2} \ldots m_{2 k}$ and r are the unknowns $B_{0}\left(m_{1}, \cdots, m_{2 \mathrm{k}}, r\right)=0$ which have to be searched in K
$B_{k-1}\left(m_{1}, \ldots, m_{2 k}, r\right)=0$
$\left(m_{k+1}-1\right)\left(m_{k+2}-1\right) \quad \cdots\left(m_{2 k}-\right.$

1) $=0$

There is an algorithm to solve this kind of system

Lebegue's method (summary)

let $\mathrm{P}(\mathrm{X})$ be an irreducible polynomial in $\mathrm{K}[\mathrm{X}]$
if $\mathrm{P}(\mathrm{X})=0$ is solvable using only square roots, it can be factorized into factors of degree 1 by using recursively the previous algorithm
then all the numbers r_{i} such that $K\left(\sqrt{r_{1}}, \ldots, \sqrt{r_{n}}\right)$ is the splitting field of P are computed during the factorization.
if the factorization cannot be done, then $P(X)$ is not solvable using only square radicals

This mèthod was implemented in Mapple by C. Chen.

Exemple : Appolonius's problem

Given three
$\operatorname{circles}_{1}:\left(x-p_{1}\right)^{2}+\left(y-p_{2}\right)^{2}=p_{3}^{2}$
find
$C:\left(x-x_{1}\right)^{2}+\left(y-x_{2}\right)^{2}=x_{3}^{2}$
$C_{2}:\left(x-p_{4}\right)^{2}+\left(y-p_{5}\right)^{2}=p_{6}^{2}$
$\mathrm{C}_{3}: x^{2}+y^{2}=p_{7}^{2}$
such
that $\left.\left(x_{1}-p_{1}\right)^{2}+\left(x_{2}-p_{2}\right)^{2}\right)^{2}-\left(p_{3}^{2}-x_{3}^{2}\right)^{2}=0$
$\left.f_{2}=\left(x_{1}-p_{4}\right)^{2}+\left(x_{2}-p_{5}\right)^{2}\right)^{2}-\left(p_{6}^{2}-x_{3}^{2}\right)^{2}=0$
$f_{3} \frac{1}{7}\left(x_{1}^{2}+x_{2}^{2}\right)^{2}-\left(p_{7}^{2}-x_{3}^{2}\right)^{2}=0$
First, we have to put this system into a triangular form
Thè Wù-Ritt algorithm gives 8 charracteristic sets
I. \therefore the equations to be solved have at most degree 2 i

Exemple 2

Given two parallel lines D and D^{\prime} and three points : A on D, B on D^{\prime} and C. Construct a line passing through C and which intersect line D in E and line D^{\prime} in F such that $A E+B F$ equals a given value p_{1}.

$$
\begin{aligned}
& B(0,0), D=O x \\
& A\left(p_{2}, p_{3}\right), C\left(p_{4}, p_{5}\right), E\left(x_{1}, x_{2}\right), F\left(x_{3}, x_{4}\right) \text {, }{ }^{2}, ~ B, F
\end{aligned}
$$

$$
f_{1} x_{4}=0
$$

$$
f_{-2} x_{2}-p_{3}=0
$$

$$
\cos _{3}\left(x_{2}-p_{5}\right)\left(x_{3}-p_{4}\right)\left(x_{1}-p_{4}\right)\left(x_{4}-p_{5}\right)=0
$$

$$
\left.f_{4}:\left(x_{1}-p_{2}\right)^{2}+\left(x_{2}-p_{3}\right)^{2}+x_{3}^{2}+x_{4}^{2}-1 p_{1}^{2}-4\left(-x_{1}\right)^{2} p_{2}\right)^{2}
$$

$$
1-4\left(x_{2}-p_{3}\right)^{2}+4 x_{3}^{2}-4 x_{4}^{2}=0
$$

Exemple 2 (suite)

Exemple 3 : Cramer-Castillon's problem

$O(0,0)$ center of (radius $A\left(p_{1}, p_{2}\right), B\left(p_{3}, p_{4}\right), C\left(p_{5}, 0\right)$ and $M\left(x_{1}, x_{2}\right), N\left(x_{3}, x_{4}\right), P\left(x_{5}, x_{6}\right)$
$f_{1}:\left(x_{1}-p_{1}\right)\left(x_{6}-p_{2}\right)-\left(x_{2}-p_{2}\right)\left(x_{5}-p_{1}\right)=0$
$f_{2}:\left(x_{1}-p_{5}\right) x_{4}-x_{2}\left(x_{3}-p_{5}\right)=0$
$f_{3}\left(x_{5}-p_{3}\right)\left(x_{4}-p_{4}\right)-\left(x_{3}-p_{3}\right)\left(x_{6}-p_{4}\right)$
$f_{4} x_{1}^{2}+x_{2}^{2}-1=0$

$f_{5}: x_{3}^{2}+x_{4}^{2}-1=0$
$x_{6}^{2} \cdot x_{5}^{2}+x_{6}^{2} 1=0$

Whe Wu-Ritt algorithm failed (with the o2 mapple implementation)

Conclusion

The Lebesgue's method seems different from the Gao-Chou method

It is not efficient but it gives a theoretical result about decidability of RC-contructibility

It can be improved to take «Origamis 》. constructions into account

