About the Lebesgue's method and RCconstructibilty

Pascal Schreck IGG-LSIIT UMR CNRS 7005 Université Louis Pasteur - Strasbourg

Exact solutions in GCS

An exact solution of a constraint system is a formal (symbolic) object f one can *prove* that f satisfies the constraints An exact solution *f* is usefull if it is usable to compute other informations one can compute controlled real approximations of ff is expressed with a set of basic operations Examples

algebraic equations and radicals $\sqrt[p]{x}$ geometric constructions and rule and compass operations

Plan

1- RC-constructibility

2- Computability of a field, RP-computability and factorization

3- RP-computability and field extensions

4- Lebegue's method

5- Conclusion

Rule and compass constructions

basic operations (considered as exact operations) drawing a line passing through two points drawing a circle whose radius is given by two points considering the intersection(s) of lines and circles

it is not so easy to see if a GC-system is RC-constructible or not

angle trissectionsquaring the circle

(open problems during ~2000 years)

Cramer-Castillon 's problem (1742)

Given a circle Γ and three points A, B and C (out of Γ).

Construct points M, N and P on circle Γ such that A MP, B NP and C MN.

CAD problems

Only one of these two problems is RC-constructible, which one?

Mathematical results

Def: a real is RC-constructible (from points (0,0) and (1,0)) if it is a coordinate of a RC-constructible point (from points (0,0) and (1,0)).

Thm(Wantzel 1837): Each RC-constructible number is algebraic over Q and its degree is equal to 2^k for some k in \mathbb{N} .

The reverse is false: one of the roots of X^4 -X-1 is not RC-constructible

Mathematical results (2)

Thm (Gallois ~1870): Let be an algebraic number over Q, P(X) be its minimal polynomial and K be the splitting field of P(X). Number is RC-constructible iff $[K:Q] = 2^k$ for some k in \mathbb{N} .

an important consequence: Thm : Let be an algebraic number over Q, is RC-constructible iff there is a sequence of fields $L_0, ..., L_n$ such that $L_0 = Q$, $L_n = Q()$ and $[L_{i+1}:Li] = 2$.

(G. Chen, H. Carrayol, 1992)

How to *compute* the splitting field of P(X)?

Computability, RP-computability

A computable field is a field (K,+,.) such that operations +, -, . and / are computable

(there are data structure for *K*, and algorithms for +,-,. and /)

Def: a field K is RP-computable if
- it is a computable field
- and there is an algorithm to compute the roots in K for each polynomial in K[X].

Examples: - each finite field is RPcomputable; - *Q* is RP-computable.

Factorization

Thm : K is a RP-computable field, iff there is a factorization algorithm in K[X].

Sketch of the if part is self-evident proof: Finding degree k factors of $X^{k+}a_1X^{k-1} + \dots a_{k-1}X^{k}a_k$ $P(X): P(X) = Q(X)(X^{k+}a_1X^{k-1} + \dots + a_k) + R(X)$ since R(X)=0 and coef. r_i of R(X) are in $K[a_1, \dots a_k]$ we must have $\begin{cases} r_{k-1}(a_1, \dots, a_k)=0 \\ \dots \\ r_0(a_1, \dots, a_k)=0 \\ \dots \\ \text{form} \end{cases} \text{ puting it under triangular form} \begin{cases} r'_{k-1}(a_1)=0 \\ \dots \\ r'_0(a_1, \dots, a_k)=0 \\ \dots \\ n'_0(a_1, \dots, a_k)=0 \end{cases}$

There is an algorithm to solve these equations *in K*

RP-computability and field extension

Thm: Let $K \subset F$ be a field extension and v be an element of F. If K is RP-computable, K(v) is RP-computable too.

constructive proof: case where v is transcendant

- computability: each element of K(v) is a pair of polynomials over K +, _, * and / are computable operations

- RP-computability: this is basically the algorithm used to find the root in Q of polynomials in Q[X].

RP-computability and field extension

case where v is algebraic over K(v is known through its irreducible polynomial P).

- computability: each element of K(v) is a polynomial in v of degree d° P_v -1

+, , * and / are computable.

- RP-computability:

 $f(X) = {}_{0}X^{n} + ... + {}_{n-1}X + {}_{n}$ where ${}_{i}$ in $K(v) = {}_{i} = a_{i,0}v^{k-1} + ... + a_{i,k-1}$ a root of f can be written $x_0 = b_0 v^{k-1} + \dots + b_{k-1}$ (b_i are unknown) so we have

 $\begin{cases} \beta_0(b_{0,\dots,b_{k-1}}) = 0\\ \vdots\\ \beta_{k-1}(b_{0,\dots,b_{k-1}}) = 0 \end{cases}$

all the reductions are computable

 $f(x_0) = 0 = {}_0 v^{k-1} + \dots + {}_{k-1}$

Lebegue's method (~1940)

Thm (1992?): let P(X) be irreducible in K[X]. If P(X)=0 is solvable using only square radicals, then there is a number r in K such that P(X) is reducible over $K(\sqrt{r})$.

Utilization: let P(X) be an irreducible polynomial over K, let us try to find r and to factorize P let Q(X) be such a factor, we have : $Q(X) = X^{k} + m_{1X}^{k-1} + \ldots + m_{k} + \sqrt{r(m_{k+1}X^{k-1} + \ldots + m_{2k})} \qquad m_{i} \quad K, r \in K$ by Euclidean division P(X) = Q(X)*T(X) + $R(X) = (A_0(m_1^{\mathbf{R}(X)}, m_{2k}, r) + \sqrt{r} B_0(m_1, \dots, m_{2k}, r)) X^{k-1} +$ $+A_{k-1}(m_{1,...,m_{2k}},r)+\sqrt{r}B_{k-1}(m_{1,...,m_{2k}},r)$ and R(X) must vanish anywhere

Lebegue's method (suite)

all the equations are over *K* $m_1, m_2 \dots m_{2k}$ and *r* are the unknowns which have to be searched in *K*

There is an algorithm to solve this kind of system

Lebegue's method (summary)

let P(X) be an irreducible polynomial in K[X]

if P(X)=0 is solvable using only square roots, it can be factorized into factors of degree 1 by using recursively the previous algorithm

then all the numbers r_i such that $K(\sqrt{r_1}, \dots, \sqrt{r_n})$ is the splitting field of *P* are computed during the factorization.

if the factorization cannot be done, then P(X) is not solvable using only square radicals

This method was implemented in Mapple by G. Chen.

Exemple : Appolonius's problem

Given three circles C_1: $(x-p_1)^2 + (y-p_2)^2 = p_3^2$ $C:(x-x_1)^2+(y-x_2)^2=x_3^2$ find $C_2:(x-p_4)^2+(y-p_5)^2=p_6^2$ $C_3: x^2 + y^2 = p_7^2$ such $\frac{t_1}{1} = \left| (x_1 - p_1)^2 + (x_2 - p_2)^2 \right|^2 - (p_3^2 - x_3^2)^2 = 0$ $f_{2} = \left[(x_{1} - p_{4})^{2} + (x_{2} - p_{5})^{2} \right]^{2} - (p_{6}^{2} - x_{3}^{2})^{2} = 0$ $f_3 = \left(x_1^2 + x_2^2\right)^2 - \left(p_7^2 - x_3^2\right)^2 = 0$ First, we have to put this system into a triangular form The Wu-Ritt algorithm gives 8 characteristic sets ... the equations to be solved have at most degree 2

Exemple 2

B

E

Given two parallel lines D and D' and three points : A on D, B on D' and C. Construct a line passing through C and which intersect line D in E and line D' in F such that AE+BF equals a given value p_1 .

B(0,0), D'=Ox $A(p_2,p_3), C(p_4,p_5), E(x_1,x_2), F(x_3,x_4)$

 $f_1: x_4 = 0$

 $f_{2}:x_{2}-p_{3}=0$ $f_{3}:(x_{2}-p_{5})(x_{3}-p_{4})-(x_{1}-p_{4})(x_{4}-p_{5})=0$ $f_{4}:|(x_{1}-p_{2})^{2}+(x_{2}-p_{3})^{2}+x_{3}^{2}+x_{4}^{2}-p_{1}^{2}|^{2}-4(x_{1}-p_{2})^{2}$ $-4(x_{2}-p_{3})^{2}-4x_{3}^{2}-4x_{4}^{2}=0$

Exemple 2 (suite)

 $x_1 = s_1 + s_2$ wher $s_1 = \frac{\sqrt{u}}{v}$ and $s_2 = \frac{-q}{r}$ with e

= 100.301 - 4 pr = -1007 = 20.30 pr = + 28 pr = 201 + 50 p = p = r = 1 + p

 $= 4p^{2n} 2p_{1}^{2} + 8p^{2n} 2p_{2} + 8p^{2n} 4p_{2} = 48p^{2n} 24 p^{2n} 1^{2} = 48p^{2} 3sart 1 + p_{1}^{2} + 16p_{2}^{2}$

 $8p_{c}^{4p}2 + 16p_{5}^{4sqrt}1 + p_{1}^{2} - 4p_{c}^{4p}2$

 $v = 2p_3^2 - 4p_4 4p_5^2$

and

Exemple 3 : Cramer-Castillon's problem

O(0,0) center of (radius $A(p_1,p_2), B(p_3,p_4), C(p_5,0)$ and $M(x_1,x_2), N(x_3,x_4), P(x_5,x_6)$

 $f_{1}:(x_{1}-p_{1})(x_{6}-p_{2})-(x_{2}-p_{2})(x_{5}-p_{1})=0$ $f_{2}:(x_{1}-p_{5})x_{4}-x_{2}(x_{3}-p_{5})=0$ $f_{3}:(x_{5}-p_{3})(x_{4}-p_{4})-(x_{3}-p_{3})(x_{6}-p_{4})$ $f_{4}:x_{1}^{2}+x_{2}^{2}-1=0$ $f_{5}:x_{3}^{2}+x_{4}^{2}-1=0$ $f_{6}:x_{5}^{2}+x_{6}^{2}-1=0$

Conclusion

The Lebesgue's method seems different from the Gao-Chou method

It is not efficient but it gives a theoretical result about decidability of RC-contructibility

It can be improved to take « Origamis » constructions into account