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Exact solutions in GCS

An exact solution of a constraint system is 
a formal (symbolic) object f
one can prove that f satisfies the constraints

An exact solution f is usefull if 
it is usable to compute other informations 

one can compute controlled real approximations of f

f is expressed with a set of basic operations

Examples

geometric constructions and rule and compass operations

algebraic equations and radicals  
p√ x
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Rule and compass constructions

basic operations (considered as exact operations)

it is not so easy to see if a GC-system is RC-constructible or not

drawing a line passing through two points
drawing a circle whose radius is given by two points
considering the intersection(s) of lines and circles

- angle trissection

- squaring the circle (open problems during ~2000 years)



Cramer-Castillon 's problem (1742)

Given a circle Γ  and 
three points A, B and 
C (out of Γ ).

 Construct points M, 
N and P on circle Γ  
such that
A �  MP, B �  NP and 
C �  MN. A

B

C
M

N

P

Γ



CAD problems

Only one of these two problems is RC-constructible, which 
one ?



Mathematical results

The reverse is false: one of the roots of X4-X-1 is not RC-constructible

Thm(Wantzel 1837): Each RC-constructible number is algebraic over  
ℚ and its degree is equal to 2k for some k in ℕ.

Def: a real is RC-constructible (from points (0,0) and (1,0)) if it is 
a coordinate of a RC-constructible point (from points (0,0) and (1,0)).



Mathematical results (2)

Thm (Gallois ~1870): Let �  be an algebraic number over ℚ , P(X) be 
its minimal polynomial and K be the splitting field of P(X).
Number �  is RC-constructible iff [K:ℚ] = 2k for some k in ℕ.

How to compute the splitting field of P(X) ?

Thm : Let �  be an algebraic number over ℚ , �  is RC-constructible 
iff there is a sequence of fields L

0
, ..., L

n
 such that L

0
 = ℚ , L

n
=ℚ(� ) 

and [L
i+1

:Li] = 2.

(G. Chen, H. Carrayol, 1992)

an important 
consequence:



Computability, RP-computability

A computable field is a field (K,+,.) such that operations +, -, . and /  
are computable

(there are data structure for K, and algorithms for +,-,. 
and /)

Examples: 
- each finite field is RP-

computable;
- ℚ is RP-computable. 

Def: a field K is RP-computable if 
 - it is a computable field  
 - and there is an algorithm to compute the roots in K for 
each polynomial in K[X]. 



Factorization

Sketch of the 
proof :

if part is self-evident

P(X) = Q(X)(Xk+a
1
Xk-1 + ... + a

k
) + R(X)

Finding degree k factors of 
P(X) :

Xk+a
1
Xk-1 + ... a

k-1
X+ a

k

since R(X)=0 and coef. r
i
of R(X) are in K[a

1
, ...a

k
] we must have

{
rk−1(a1, ... ,a k)=0…
r0(a1, ... , ak)=0
 
 

{
r ' k−1(a1)=0…
r ' 0(a1, ... , ak)=0
 
 

puting it under
triangular 
form

There is an algorithm to solve these equations in K

Thm : K is a RP-computable field, iff there is a factorization
algorithm in K[X].



RP-computability and field extension

constructive 
proof:
case where υ is transcendant

- RP-computability: this is basically the algorithm used to find the root 
in ℚ of polynomials in ℚ[X]. 

- computability:  each element of K(υ) is a pair of polynomials over K

+, _, * and / are computable operations

Thm: Let K ⊂ F be a field extension and υ be an element of F.
If K is RP-computable, K(υ) is RP-computable too.



RP-computability and field extension

case where υ is algebraic over K 

- computability: each element of K(υ) is a polynomial in υ of degree d°Pυ -1 

 (υ is known through its irreducible polynomial P� ). 

+,_, * and / are computable.

- RP-computability:

f(X)=�
0
Xn + ... + �

n-1
X + �

n
    where � ι in K(υ) �

i
 = a

i,0
υk-1 + ... +a

i,k-1
 

a root of f can be written x
0
= b

0
υk-1 + ... +b

k-1
  (b

i
 are unknown) so we have

f(x
0
) = 0 = �

0
υk-1 + ... +�

k-1 {
β0(b0, ... ,bk−1)=0…
βk−1(b0, ... , bk−1)=0
 
 

all the reductions are 
computable



Lebegue's method (~1940)

Utilization: let P(X) be an irreducible polynomial over K, let us try
to find r and to factorize P
let Q(X) be such a factor, we have : 

Q (X )=X k+m1X
k−1+…+mk+√r (mk+1 X k−1+…+m2k) m

i
 �  K, r �  K

Thm (1992?): let P(X) be irreducible in K[X]. If P(X)=0 is solvable using only 
square radicals, then there is a number r in K such that P(X) is 
reducible over          .K (√ r )

P(X) = Q(X)*T(X) + 
R(X)

by Euclidean division

R (X )=(A0(m1,… , m2k , r )+√r B0(m1,… , m2k , r)) X k−1+  

 +Ak−1(m1,… , m2k , r)+√r Bk−1(m1,… , m2k , r)
...

and R(X) must vanish anywhere



Lebegue's method (suite)

A0(m1,… , m2k , r)=0…
Ak−1(m1,… , m2k , r )=0
B0(m1,… , m2k , r )=0…
Bk−1(m1,… , m2k , r)=0
 
 
 

{ m
1
, m

2
 ... m

2k
 and r are the unknowns

which have to be searched in K

all the equations are over K

(m
k+1

-1)(m
k+2

-1) ... (m
2k

-
1)=0

There is an algorithm to solve this kind of system



Lebegue's method (summary)

let P(X) be an irreducible polynomial in K[X]

if P(X)=0 is solvable using only square roots, it can be factorized
into factors of degree 1 by  using recursively the previous algorithm

if the factorization cannot be done, then P(X) is not solvable using
only square radicals

then all the numbers r
i
 such that                             is the splitting field 

of P are computed during the factorization. 
K (√r1 ,… ,√rn)

This method was implemented in Mapple by G. Chen.



Exemple : Appolonius's problem

C 2 :(x− p4)
2+( y− p5)

2= p6
2

C 3 : x2+ y2= p7
2

C 1 :(x− p1)
2+( y− p2)

2= p3
2

C :(x−x1)
2+( y−x2)

2=x3
2

Given three 
circles

find

such 
that

f 2=((x1− p4)
2+(x2− p5)

2 )2−( p6
2−x3

2)2=0

f 3=( x1
2+x2

2 )2−( p7
2−x3

2)2=0

f 1=((x1− p1)
2+(x2− p2)

2 )2−( p3
2−x3

2)2=0

The Wu-Ritt algorithm gives 8 characteristic sets
... the equations to be solved have at most degree 2

First, we have to put this system into a triangular form



Exemple 2
Given two parallel lines D and D' and three points : A on D, B on D' 
and C. Construct a line �  passing through C and which intersect line
D in E and line D' in F such that AE+BF equals a given value p

1
.

A
B

C

D
'

D
�

F
E

B(0,0), D'=Ox
A(p

2
,p

3
), C(p

4
,p

5
), E(x

1
,x

2
), F(x

3
,x

4
)

f 2 : x2− p3=0

f 3 :(x2− p5)(x3− p4)−(x1− p4)(x4− p5)=0

f 4 : ((x1− p2)
2+(x2− p3)

2+x3
2+x4

2− p1
2 )2−4(x1− p2)

2

 −4(x2− p3)
2−4x3

2−4x4
2=0

f 1 : x4=0



Exemple 2 (suite)

x
1
 = s

1
 + s

2 s1=
√u
v

wher
e

withs2=
−q
r

4
1
3
2
3
4
5sqrt

u=8p3
4+8p3

4√1+ p1
2−4p¿

4p 2+4p¿
4p 2+8p¿3p¿32p¿3+8p¿

3p 2p5−32p¿
3p 1+ p1

2¿

3
2
3
2
3
3
−16p¿3p 1

2−4 p¿
2p 2−16p¿

2p 2p¿56 p¿
2p 2+28 p¿

2p 2p1
2+56 p3

2 p5
2sqrt 1+ p1

2

4
2
3p
3
3p
5
−4p¿

2p 2p5
2+8p¿

3p 2p3+8p¿
3p 4p2−48 p¿

3p 24 p¿
3p 12−48p¿3sqrt 1+ p1

2+16p5
4

1
2
8p¿

4p 2+16p5
4sqrt 1+ p1

2−4p¿
4p 2

5
v=2p3

2−4p¿ 4p5
2

and 
3
2p
2p
3p
3
2p
2
3
q=−4p¿3p5−28p¿

2p 32+24p¿
3p 3−8 p¿53+8p¿2p5

2+16p¿3
3−8p¿

4p 4p¿4

3
3
3
r=16p5

4−16p¿3+4p3
4−32p¿

3p 32p¿
2p 2

and 



Exemple 3 : Cramer-Castillon's problem

A

B

C
M

N

P

Γ

O(0,0) center of �  (radius 
=1)A(p

1
,p

2
),B(p

3
,p

4
),C(p

5
,0) and 

M(x
1
,x

2
), N(x

3
,x

4
), P(x

5
,x

6
)

f 1 :(x1− p1)(x6− p2)−(x2− p2)(x5− p1)=0
f 2 :(x1− p5) x4−x2(x3− p5)=0
f 3 :(x5− p3)(x4− p4)−(x3− p3)(x6− p4)

f 4 : x1
2+x2

2−1=0

f 5 : x3
2+x4

2−1=0

f 6 : x5
2+x6

2−1=0

The Wu-Ritt algorithm failed (with the 92' mapple 
implementation)



Conclusion

The Lebesgue's method seems different from the Gao-Chou 
method

It is not efficient but it gives a theoretical result about decidability of
RC-contructibility

It can be improved to take « Origamis » constructions into 
account
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