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the Lebesgue's method and RC-




Exact solutions in GCS

An exact solution of a constraint system 1s
a formal (symbolic) object f
one can prove that f satisfies the constraints

_ An-_._exé_l__ct solution f'is usefull if
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Cramer-Castillon 's problem (1742)

Given a circle [ and
three points 4, B and
C (out of /).

Construct points M,
N and P on circle [

such that
A MP,B NP and

C MN.




CAD problems

Only one of these two problems 1s RC-constructible, which
one ?




Mathematical results

Def: a real is RC-constructible (from points (0,0) and (1,0)) if it is
‘ a coordinate of a RC-constructible point (from points (0,0) and (1,0)).
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Mathematical results (2)

Thm (Gallois ~1870): Let be an algebraic number over Q , P(X) be

its minimal polynomial and K be the splitting field of P(X).
Number is RC-constructible iff [K: Q] = 2* for some k in IN.

an important
consequence:
Thm : Let be an algebraic number over Q, is RC-constructible

iff there is a sequence of fields L, ..., L_such that L, = Q,L =Q( )
and [L., :Li] = 2.

(G. Chen, H. Carrayol, 1992)

How to compute the splitting field of P(X) ?



Computability, RP-computability

A computable field 1s a field (K,+,.) such that operations +, -, . and /
are computable

(there are data structure for K, and algorithms for +,-,.
and /)




Factorization

Thm : K is a RP-computable field, iff there is a factorization
| algorithm in K[ X].

Sketch of the if part 1s self-evident
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RP-computability and field extension

Thm: Let K [ F be a field extension and U be an element of F.
I If K is RP-computable, K(U) is RP-computable too.

constructive

proof: ,
case where U1s transcendant
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RP-computability and field extension

case where U1s algebraic over K
(v1s known through 1its 1irreducible polynomial P ).
- computability: each element of K(U) is a polynomial in v of degree d°P -1
+, , * and / are computable.

- RP-computability:




Lebegue's method (~1940)

Thm (19927?): let P(X) be irreducible in K[X]. If P(X)=0 is solvable using only
square radicals, then there is a number r in K such that P(X) is
reducible over K(\r)

Utilization: let P(X) be an 1rreducible polynomial over K, let us try
to find » and to factorize P

let O(X) be such a factor, we have :
O(X)=X" "4 miy +otmAdr(m X .. 4my) m Kr K
by Euclidean division - P(X) = Q(X)*T(X) +
R(X )= Ag(m By, )47 By(my . omy, 1)) X+
—I—Ak_l(ml,...,mzk,r)+\/;Bk_1(m1,...,mzk,r)

and R(X) must vanish anywhere



Lebegue's method (suite)

Ao(m1,- oy My, r)=0 all the equations are over K

Ak_l(ml’...,mZk,r)=0 m,, m, ... m, and r are the unknowns

1, 2 L)

Bo(mlﬂ..., My, 7)=0

which have to be searched in K
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Lebegue's method (summary)

let P(X) be an 1rreducible polynomial in K[ X]

if P(X)=0 1s solvable using only square roots, it can be factorized
into factors of degree 1 by using recursively the previous algorithm

then all the numbers 7, such that K (\/7 o \/r_n) __is_the splitting ﬁ_eld_

- of P are computed during the factorization.




Exemple : Appolonius's problem

Given three
P p, P+ (
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Exemple 2

Given two parallel lines D and D' and three points : 4 on D, B on D'
and C. Construct a line  passing through C and which intersect line

D in E and line D' in F such that AE+BF equals a given value p ..

B(0,0), D'=0x B D
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Exemple 2 (suite)
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Exemple 3 : Cramer-Castillon's problem

0(0,0) center of (radius
#(),.,),.B(p,.p,),C(p;,0) and
M(xpxz)a N(x3>x4)9 P(x59x6)

fl:<x1_pl)(x6_p2)_<x2_p2)(x5_p1)20
Fo:tps) Xgms (6= po)=0
f3:(xS—p3)(x4—p4)—(x3—p3)(x6—p4)
ok a0

foxi+x,—1=0

f6:x§—|—x§—1=O

The Wu-Ritt algorithm failed (with the 92' mapple
implementation)



Conclusion

Chou

s method seems different from the Gao

The Lebesgue
method
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