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Université de Strasbourg - LSIIT, UMR CNRS 7005

12-12-12



Geometric
constructibility

Pascal Schreck

Introduction

Exact solution

some frameworks and
problems

Lebesgue’s method

Mathematical results

Computability

Lebesgue’s method

Ritt-Wu’s principle

Examples

construction

Unconstructibility

Lebesgue’s method
(at last)

Introduction

By opposition to other methods for solving geometric
constraints, particularly in CAD, geometric constructions aim
at computing exact solutions.

I This approach has some interest in CAD domain (and
some drawbacks to be fair).

I The ingredients used are very similar to those used in
proof in geometry.

I I take here the example of algebra by presenting
Lebesgue’s method.
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Exact solution

Given a ∀∃ problem an exact solution is

I a symbolic object ...

I and a proof that it fulfills the specifications

Examples (outside of geometry)

I for all integer x, there is an integer y such that x+y=5

I for all list L, there is a sorted list L’ containing exactly
the same elements

A formal framework is needed

I to express the specification;

I to define the tools to perform the proof;

I (possibly) to construction the symbolic solution
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RC-constructible numbers

I For the ancient Greeks, the set of the RC-constructible
numbers + euclidean geometry was such a fundamental
framework.

I Classical definition through the notions of points, lines
and circles RC-constructible.

I But RC-constructible numbers can also be defined
through constructible operations:

I addition, subtraction;
I multiplication, division;
I square radical.

I There are famous unconstructibility issues.
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Proofs

Different kinds of proof

I high level geometry

I logic and foundations

I combinatoric

I algebraic:Wu’s method, Ritt-Wu principle.

In this talk, I will focus on the last point.

Wu’s method roughly speaking

I translation from geometry to algebra

I ”triangularization” of the system corresponding to the
hypothesis

I successive pseudo-divisions of the goal by the hypothesis
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Wu’s method and algebra

I Roughly speaking, a theorem of the form H ⇒ g is
stated by

I g belongs to
√
〈H〉, or

I V (H) ⊂ V (g)

I The point of the Ritt-Wu principle is precisely to
characterize the Zero-set of a set of polynomials.

I It is then no surprising that the Ritt-Wu principle is also
useful in (geometric) constraint satisfaction

In the following, I present a method mixing the Ritt-Wu’s
principle and the Lebesgue’s method to exactly solve
polynomial systems corresponding to RC-problems.
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Mathematical results

Definition (RC-constructible from O and I)

A real is RC-constructible iff it is a coordinate of a
RC-constructible point in the plane.

Theorem (Wantzel 1837)

Each RC-constructible number is algebraic over Q and its
degree is equal to 2k for some k ∈ N

Notes

I the converse is false: one of the roots of X 4 − X − 1 is
not RC-constructible.

I this thm was used for famous impossibility theorems

I base of the theorem: “if P ∈ Q[X ] with degree 3 has no
rational root, then its roots are not RC-constructible”
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Mathematical results (continued)

Theorem (Gallois ∼1870)

Let α be an algebraic number over Q, P(X ) be its minimal
polynomial and K be the splitting field of P(X ).
α is RC-constructible iff [K : Q] = 2k for some k ∈ N.

Notes

I Wantzel: RC-constructibility ⇒ [R : Q] = 2l with R =
rupture field of P

I Gallois: RC-constructibility ⇔ [K : Q] = 2k

I Wantzel’s result can prove unconstructibility, but not
constructibility result.



Geometric
constructibility

Pascal Schreck

Introduction

Exact solution

some frameworks and
problems

Lebesgue’s method

Mathematical results

Computability

Lebesgue’s method

Ritt-Wu’s principle

Examples

construction

Unconstructibility

Lebesgue’s method
(at last)

Mathematical results (continued)

Galois’s result and Lebesgue’s method

I using Galois’s result one can prove that α is
RC-constructible iff it exists a sequence of fields
L0, ..., Lk such that L0 = Q, [Li+1 : Li ] = 2 and α ∈ Lk .

I Lebesgue compute the splitting field of an irreducible
polynomial (with degree 2k) by using a polynomial so
called Galois’s resolvent (with degree (2k)!)

Theorem (Chen-Carrayol 1992)

Let α be an algebraic number over Q, α is RC-constructible
iff there is a sequence of fields L0, ..., Lk such that L0 = Q,
[Li+1 : Li ] = 2 and Lk = Q[α].
Then the minimal polynomial of α is decomposable on L1.
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About computability

Definition (computable filed)

A field (K ,+, ∗) is computable if the operations +,−, ∗ and
/ are computable

Definition (RP-computability)

A field (K ,+, ∗) is RP-computable if it is computable and
there is an algorithm to compute the roots in K for every
polynomials P ∈ K [X ].

Examples

I finite fields

I Q



Geometric
constructibility

Pascal Schreck

Introduction

Exact solution

some frameworks and
problems

Lebesgue’s method

Mathematical results

Computability

Lebesgue’s method

Ritt-Wu’s principle

Examples

construction

Unconstructibility

Lebesgue’s method
(at last)

Factorization

Theorem
A field K is RP-computable iff there is a factorization
algorithm in K [X ].

Sketch of the proof: (⇐ is obvious)
* ⇒ :
Let X k + a1X k−1 + . . . ak1X + ak be a factor of P(X ). By
euclidean division we have:

P(X ) = Q(X )(X k + a1X k−1 + . . . ak1X + ak) + R(X )

with R(X ) = 0 and each coeff ri of R belongs to
K [a1, . . . ak ].

rk−1(a1, . . . , ak) = 0
. . .
r0(a1, . . . , ak) = 0

giving


r ′k−1(a1) = 0
. . .
r ′0(a1, . . . , ak) = 0
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Factorization (continued)

Notes

I Triangularization by computing Ritt-Wu characteristic
sets, or euclidean division in some rational field, or using
Groebner basis.

I solving the triangular system by using the algorithm for
computing roots of polynomials in K [X ].

I of course, there are better algorithms to factorize
polynomials (Kronecker, Berlekamp,
Cantor-Zassenhaus, Wang for algebraic extensions of Q)
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RP-computability and field extension

Theorem
Let K ⊂ F be a field extension and µ be an element of F . If
K is RP-computable, K (µ) is RP-computable too.

Corollary

With the same notations, there is a factorization algorithm
for K (µ)[X ]
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Recall

Theorem
α is RC-constructible iff there is a sequence α1, . . . αk = α
such that [Q(α1) : Q] = 2 and
[Q(αi+1, . . . α1) : Q(αi , . . . α1] = 2

Theorem
Let P(X ) be an irreducible polynomial in K [X ] (K being an
algebraic extension of Q); if P(X ) = 0 is solvable using
square roots then there is some r ∈ K such that P(X ) is
decomposable on K (

√
r).
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Use

Let P(X ) be an irreducible polynomial on K , let’s try to find
r and to factorize P.

If Q(X ) is such a factor, we have (mi ∈ K , r ∈ K ):

Q(X ) = X k+m1X k−1+. . .+mk+
√

r(mk+1X k−1+. . .+m2k)

by euclidean division: P(X ) = Q(X )T (X ) + R(X ) with

R(X ) = (A0(m1, . . . ,m2k , r)+
√

rB0(m1, . . . ,m2k , r))X k−1+

. . .+ Ak−1(m1, . . . ,m2k , r) +
√

rBk−1(m1, . . . ,m2k , r)

where each Ai and Bj belong to K [m1, . . . ,m2k , r ].
Moreover R(X ) should be the null polynomial.
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Use (continued)

This leads to solve the algebraic system (S0):

A0(m1, . . . ,m2k , r) = 0
. . .
Ak−1(m1, . . . ,m2k , r) = 0
B0(m1, . . . ,m2k , r) = 0
. . .
Bk−1(m1, . . . ,m2k , r) = 0
(mk+1 − 1)(mk+2 − 1) . . . (m2k − 1) = 0

where the unknowns m1, . . . ,m2k et r are to be solved in K .
Solving S0 uses triangularization and the algorithm for
finding roots in K .
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Use (continued)

I If there is no solution, P(X ) is not decomposable and
the process ends.

I If there is a solution for S0, when polynomial P(X ) can
be decomposed, and the process recursively goes on on
each factor taking Q(

√
r) for K .

I at the end, either polynomial is totally split (and we
have a characterization of its splitting field), or the
polynomial is not decomposable.
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Ritt-Wu’s principle
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Revealing the cheater

I was very imprecise when talking about Wu’s method in
geometric proof or triangulation.

What I said

I Roughly speaking, a theorem of the form H ⇒ g is
stated by

I g belongs to
√
〈H〉, or

I V (H) ⊂ V (g)

Actually (Chou)

For most geometry theorems, some hypothesis are
des-equality specifying degenerate cases:

I ∀y ∈ E .h1 = 0 ∧ . . . hn = 0 ∧ s1 6= 0 . . . sk 6= 0⇒ g = 0
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Revealing the cheater (continued)

What I said
Triangularization by computing Ritt-Wu characteristic sets.

More precisely (Ritt-Wu and Chou)

Given a finite set of polynomials {h1, . . . hm}, its zero-set
can be decomposed into irreducible components (V (P∗1 ) ∪
. . .V (P∗c )) ∪ (V (P+

1 ) . . .V (P+
e )) ∪ (V (P1) ∪ . . .V (Pt))

(some of them correspond to degenerate cases)

Consequences

I It leads to a more complex notion of the validity of a
theorem: it can be true in one component and false on
another one

I when one want to solve a construction system,
triangularization cannot be just the simple Chou
method and, moreover, it leads to more than one
irreducible triangular system.
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A successful resolution (1) (Chen)

Statement. Construct a triangle given the length p1 of side
BC, and the lengths of the altitudes from A (p2) and B (p3).
Parametrization: B(0, 0),C (p1, 0),A(x1, x2). We have the
equations:
f1 : x2

2 − p2
2 = 0

f2 : p2
1x2

2 − p2
3((x1 − p1)2 + x2

2 )

We get 2 irreducible characteristic sets:
g1 = 2p2

3x1p1 − p2
3x2

1 − p2
3p2

1 − p2
2p2

3

g2(g3) = x2 ± p2
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A successful resolution (1) continued

it leads to four solutions (2 up to symmetries):

x1 = −
−2p2

3p1 ± 2p2p3

√
p2

1 − p2
3

2p2
3

, x2 = p2

x1 = −
−2p2

3p1 ± 2p2p3

√
p2

1 − p2
3

2p2
3

, x2 = −p2

The straightedge and compass construction can be
automatically deduced from this ... but it is not very
interesting.
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A successful resolution (2) continued

Statement. Given two parallel lines D and D ′, and three
points: A on D, B on D ′ and C . Construct a line ∆ passing
through C and cutting D in E and D ′ in F such that
AE + BF equals the given length p1.

∆

B

A

F

E
D

C

D’

B(0, 0),D ′ = Ox
A(p2, p3),C (p4, p5),E (x1, x2),F (x3, x4)

We get:
f1 : x4 = 0
f2 : x2 − p3 = 0
f3 : (x2 − p5)(x3 − p4)− (x1 − p4)(x4 − p5) = 0

f4 :
(
(x1 − p2)2 + (x2 − p3)2 + x2

3 + x2
4 − p2

1

)2 − 4(x1 − p2)2

−4(x2 − p3)2 − 4x2
3 − 4x2

4 = 0
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A successful resolution (2) continued

We have only one irreducible component, and the solving
gives x1 = s1 + s2, avec
s1 =

√
u
v , s2 = −q

r , et

u = 8p4
3 + 8p4

3

√
1 + p2

1 − 4p4
3p2

4 + 4p4
3p2

1 + 8p5p3
3p4p2 −

32p5p3
3 + 8p3

3p2
4p5 − 32p3

3p5

√
1 + p2

1 − 16p5p3
3p2

1 − 4p2
5p2

2 −

16p2
5p2

3p4p2 + 56p2
5p2

3 + 28p2
5p2

3p2
1 + 56p2

3p2
5

√
1 + p2

1 −
4p2

3p2
4p2

5 + 8p3
5p2

2p3 + 8p3
5p3p4p2 − 48p3

5p3 − 24p3
5p3p2

1 −
48p3p3

5

√
1 + p2

1 + 16p4
58p4

5p2
1 + 16p4

5

√
1 + p2

1 − 4p4
5p2

2 ,

v = 2p2
3 − 4p3p5 + 4p2

5

q = −4p4p3
3p5 − 28p2

5p2p2
3 + 24p3

5p2p3 − 8p4p3p3
5 +

8p4p2
3p2

5 + 16p5p2p3
3 − 8p4

5p2 − 4p2p4
3

r = 16p4
5 − 16p5p3

3 + 4p4
3 − 32p3

5p3 + 32p2
5p2

3
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A proof of unconstructibility

I just checked problem #90 of Wernick list (I thought that it
had no status according to Meyer, but it is known as
unsolvable after Vesna and Predrag paper)

In this problem, we know incenter I , midpoints Ma and Mb.
Putting I at (0, 0) and Ma at (1, 0) we get the two equations:

f1 : ((2 ∗ yA − 2 ∗ yMb)2 + (2 ∗ xA − 2 ∗ xMb)2) ∗ (2 ∗ xA ∗ yMb − (2 ∗ xMb − 2) ∗ yA)2

−(−xA ∗ (2 ∗ yMb − 2 ∗ yA) − (2 ∗ xA − 2 ∗ xMb) ∗ yA)2 ∗ (4 ∗ yMb2 + (2 ∗ xMb − 2)2) = 0

f2 : (4∗(yA−2∗yMb)2+(2∗(−2∗xMb+xA+2)−2)2)∗(−2∗(−2∗xMb+xA+2)∗yMb−(2−2∗xMb)∗(yA−2∗yMb))2

−(2∗(−2∗xMb+xA+2)∗(yA−2∗yMb)−(2∗(−2∗xMb+xA+2)−2)∗(yA−2∗yMb))2∗(4∗yMb2+(2∗xMb−2)2) = 0

Each of degree 4 with respect to yA.
Trying eliminate yA by simple Chou ’s algorithm, we get only
one equation!
Either the triangularization fails, or the status of the problem
is L
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A proof of unconstructibility (continued)

In fact, there is a common factor to the two equation
corresponding to the degenerate case. Using the factor

command of Maxima, we have:
f1 : (xMb − 1) ∗ yA3 + (−2 ∗ xMb − xA + 1) ∗ yMb ∗ yA2

+(2∗xA∗yMb2−2∗xA∗xMb2+(xA2+2∗xA)∗xMb−xA2)∗yA
+(2 ∗ xA2 ∗ xMb − xA3 − xA2) ∗ yMb = 0
and
f2 : (−xMb + 1) ∗ yA3 + (4 ∗ xMb + xA− 3) ∗ yMb ∗ yA2

+((−4 ∗ xMb − 4 ∗ xA) ∗ yMb2 − 4 ∗ xMb3 + (4 ∗ xA + 8) ∗
xMb2 + (−xA2 − 6 ∗ xA− 4) ∗ xMb + xA2 + 2 ∗ xA) ∗ yA
+(4 ∗ xA + 4) ∗ yMb3 + ((4 ∗ xA + 4) ∗ xMb2 + (−4 ∗ xA2 −
8 ∗ xA− 8) ∗ xMb + xA3 + 3 ∗ xA2 + 4 ∗ xA + 4) ∗ yMb = 0
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by simple triangularization (degree 5 wrt xA
((−32∗xMb+32)∗yMb9 +(−96∗xMb3 +288∗xMb2 −288∗xMb+96)∗yMb7 +(−96∗xMb5 +480∗

xMb4 −960∗xMb3 +960∗xMb2 −480∗xMb+96)∗yMb5 +(−32∗xMb7 +224∗xMb6 −672∗xMb5 +

1120∗xMb4 −1120∗xMb3 +672∗xMb2 −224∗xMb+32)∗yMb3)∗xA5 +((256∗xMb2 −608∗xMb+

352)∗yMb9 +(768∗xMb4−3072∗xMb3 +4608∗xMb2−3072∗xMb+768)∗yMb7 +(768∗xMb6−4320∗

xMb5 +10080∗xMb4 −12480∗xMb3 +8640∗xMb2 −3168∗xMb+480)∗yMb5 +(256∗xMb8 −1856∗

xMb7 + 5824∗xMb6 −10304∗xMb5 + 11200∗xMb4 −7616∗xMb3 + 3136∗xMb2 −704∗xMb+ 64)∗

yMb3)∗xA4+((−768∗xMb3+2688∗xMb2−3072∗xMb+1152)∗yMb9+(−2304∗xMb5+11136∗xMb4−

21888∗xMb3 +21888∗xMb2 −11136∗xMb+2304)∗yMb7 +(−2304∗xMb7 +14208∗xMb6 −37632∗

xMb5 +55680∗xMb4−49920∗xMb3 +27264∗xMb2−8448∗xMb+1152)∗yMb5 +(−768∗xMb9 +5760∗

xMb8−18816∗xMb7 +34944∗xMb6−40320∗xMb5 +29568∗xMb4−13440∗xMb3 +3456∗xMb2−384∗

xMb)∗yMb3)∗xA3 +((1024∗xMb4 −4608∗xMb3 +7808∗xMb2 −5760∗xMb+1536)∗yMb9 +(3072∗

xMb6 −17152∗xMb5 + 41472∗xMb4 −55296∗xMb3 + 42496∗xMb2 −17664∗xMb+ 3072)∗yMb7 +

(3072∗xMb8−20480∗xMb7 +60544∗xMb6−104576∗xMb5 +116480∗xMb4−86272∗xMb3 +41600∗

xMb2 −11904∗xMb+ 1536)∗yMb5 + (1024∗xMb10−7936∗xMb9 + 26880∗xMb8 −51968∗xMb7 +

62720∗xMb6−48384∗xMb5 +23296∗xMb4−6400∗xMb3 +768∗xMb2)∗yMb3)∗xA2 +((−128∗xMb+

128)∗yMb11+(−512∗xMb5 +3072∗xMb4−7552∗xMb3 +9088∗xMb2−5248∗xMb+1152)∗yMb9 +

(−1536∗xMb7 +10240∗xMb6−31104∗xMb5 +54656∗xMb4−58624∗xMb3 +37632∗xMb2−13184∗

xMb+1920)∗yMb7 +(−1536∗xMb9 +11264∗xMb8−38016∗xMb7 +78464∗xMb6−109696∗xMb5 +

107136∗ xMb4 −72064∗ xMb3 + 31616∗ xMb2 −8064∗ xMb+ 896)∗ yMb5 + (−512∗ xMb11 + 4096∗

xMb10−14336∗xMb9 +28672∗xMb8 −35840∗xMb7 +28672∗xMb6 −14336∗xMb5 +4096∗xMb4 −

512∗xMb3)∗yMb3)∗xA+(−128∗xMb+128)∗yMb11+(−512∗xMb5 +2048∗xMb4 −3584∗xMb3 +

3584∗xMb2−2048∗xMb+512)∗yMb9 +(−1024∗xMb7 +6144∗xMb6−16000∗xMb5 +23680∗xMb4−

21760∗xMb3 +12544∗xMb2−4224∗xMb+640)∗yMb7 +(−512∗xMb9 +4096∗xMb8−14592∗xMb7 +

30464∗xMb6−41216∗xMb5+37632∗xMb4−23296∗xMb3+9472∗xMb2−2304∗xMb+256)∗yMb5 = 0
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Simplification

We can take the specific example with Mb(−2, 3) since we
want to prove the non-RC-constructibility of triangle ABC .
We get, after simplification
P :
2∗xA5 +45∗xA4 +372∗xA3 +1368∗xA2 +2160∗xA+972 = 0

Either P is irreducible (and then we have proved
RC-unconstructibility since degree of xA is not a power of 2)
or we can decompose it: since it has no rational root (I
checked) the factors has resp. degree 2 and 3.

Actually, Maxima is powerful enough to prove that P is
irreducible. But we can apply the Lebesgue’s method since it
was the goal of the speech.

(once again, my apologies, I had no time to take another
example).
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Preliminary

So, P(X ) has no root in Q. We consider all the cases:

1. P(X ) is irreducible (then it’s ok)

2. P(X ) is decomposable: P = QR with deg(Q) = 3 and
deg(R) = 2. and we have to consider either Q or R as
the minimal polynomial of xA.

I Q(X ) is irreducible (since P(X ) has no root in Q), so if
Q is the minimal polynomial of xA, its ok

I R is irreducible, so applying the Lebesgue’s method, we
have to find a root in Q.
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Replacement xA = a +
√
b

√
b ∗ (2 ∗ b2 + (20 ∗ a2 + 180 ∗ a + 372) ∗ b + 10 ∗ a4 + 180 ∗

a3 + 1116 ∗ a2 + 2736 ∗ a + 2160)
+(10 ∗ a + 45) ∗ b2 + (20 ∗ a3 + 270 ∗ a2 + 1116 ∗ a + 1368) ∗
b + 2 ∗ a5 + 45 ∗ a4 + 372 ∗ a3 + 1368 ∗ a2 + 2160 ∗ a + 972
= 0
Then, we should have:
2 ∗ b2 + (20 ∗ a2 + 180 ∗ a + 372) ∗ b + 10 ∗ a4 + 180 ∗ a3 +
1116 ∗ a2 + 2736 ∗ a + 2160 = 0
and:
(10∗ a + 45)∗b2 + (20∗ a3 + 270∗ a2 + 1116∗ a + 1368)∗b +
2 ∗ a5 + 45 ∗ a4 + 372 ∗ a3 + 1368 ∗ a2 + 2160 ∗ a + 972 = 0
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continued again

Using triangularization and eliminating b, we get:
256∗a10+11520∗a9 +230112∗a8 +2685168∗a7 +20253753∗
a6 + 103083246 ∗ a5 + 358125840 ∗ a4 + 837646920 ∗ a3 +
1261104147 ∗ a2 + 1102911390 ∗ a + 425668932 = 0

to solve in Q. We consider all the possibilities p
q :

with q dividing 256 = 28 (or 26)
and p dividing 425668932 = 22 ∗ 37 ∗ 13 ∗ 19 ∗ 197 (or
37 ∗ 13 ∗ 19 ∗ 197

It is tedious but easy to verify this.
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Some questions?
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