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Introduction

By opposition to other methods for solving geometric
constraints, particularly in CAD, geometric constructions aim
at computing exact solutions.

» This approach has some interest in CAD domain (and
some drawbacks to be fair).

> The ingredients used are very similar to those used in
proof in geometry.

> | take here the example of algebra by presenting
Lebesgue’s method.
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Given a V3 problem an exact solution is

Exact solution

» a symbolic object ...

» and a proof that it fulfills the specifications

Examples (outside of geometry)

» for all integer x, there is an integer y such that x+y=b

» for all list L, there is a sorted list L' containing exactly
the same elements

A formal framework is needed

> to express the specification;
» to define the tools to perform the proof;

» (possibly) to construction the symbolic solution



RC-constructible numbers

» For the ancient Greeks, the set of the RC-constructible
numbers + euclidean geometry was such a fundamental
framework.

» Classical definition through the notions of points, lines
and circles RC-constructible.

» But RC-constructible numbers can also be defined
through constructible operations:

» addition, subtraction;
» multiplication, division;
» square radical.

» There are famous unconstructibility issues.
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Different kinds of proof

some frameworks and
problems

> high level geometry
» logic and foundations
» combinatoric

» algebraic:Wu's method, Ritt-Wu principle.

In this talk, | will focus on the last point.
Wu's method roughly speaking

> translation from geometry to algebra

» "triangularization” of the system corresponding to the
hypothesis

> successive pseudo-divisions of the goal by the hypothesis



Wu's method and algebra

» Roughly speaking, a theorem of the form H = g is
stated by

» g belongs to \/(H), or
> V(H) C V(g)
» The point of the Ritt-Wu principle is precisely to
characterize the Zero-set of a set of polynomials.

> It is then no surprising that the Ritt-Wu principle is also
useful in (geometric) constraint satisfaction

In the following, | present a method mixing the Ritt-Wu's
principle and the Lebesgue's method to exactly solve
polynomial systems corresponding to RC-problems.
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Definition (RC-constructible from O and 1)

A real is RC-constructible iff it is a coordinate of a
RC-constructible point in the plane.

Mathematical results

Theorem (Wantzel 1837)

Each RC-constructible number is algebraic over Q and its
degree is equal to 2¥ for some k € N

Notes
» the converse is false: one of the roots of X* — X — 1 is
not RC-constructible.
> this thm was used for famous impossibility theorems

» base of the theorem: “if P € Q[X] with degree 3 has no
rational root, then its roots are not RC-constructible”
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Theorem (Gallois ~1870)

Let « be an algebraic number over Q, P(X) be its minimal
polynomial and K be the splitting field of P(X).
o is RC-constructible iff [K : Q] = 2 for some k € N.

Mathematical results

Notes
» Wantzel: RC-constructibility = [R: Q] = 2/ with R =
rupture field of P
» Gallois: RC-constructibility < [K : Q] = 2k

» Wantzel's result can prove unconstructibility, but not
constructibility result.
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Galois's result and Lebesgue's method

» using Galois's result one can prove that « is
RC-constructible iff it exists a sequence of fields Wi remis
Lo, ..., Lx such that Ly = Q, [L,'_|_1 : L,] =2and a € L.
> Lebesgue compute the splitting field of an irreducible
polynomial (with degree 2) by using a polynomial so
called Galois's resolvent (with degree (24)!)

Theorem (Chen-Carrayol 1992)

Let o be an algebraic number over Q, « is RC-constructible
iff there is a sequence of fields Ly, ..., Ly such that Ly = Q,
[L,'+1 : L,'] =2 and Lk = Q[Oé]

Then the minimal polynomial of « is decomposable on L;.
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Definition (computable filed)

A field (K, +, %) is computable if the operations +, —, % and

/ are computable i
Definition (RP-computability)

A field (K, +, ) is RP-computable if it is computable and

there is an algorithm to compute the roots in K for every
polynomials P € K[X].

Examples

> finite fields

> Q
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Theorem
A field K is RP-computable iff there is a factorization
algorithm in K[X].
Sketch of the proof: (< is obvious)
* =
Let XK + a1 Xk=1 4 ... a2, X + ax be a factor of P(X). By
euclidean division we have:

Computability

P(X) = QX)(X* + arX 1 + .. a, X + ax) + R(X)

with R(X) = 0 and each coeff r; of R belongs to
K[al, ce ak].

(a1, a) =0 / —0
re—1(a1 a) giving re_1(a1)

ro(ai,...,ak) =0 ro(ar,...,ak) =0
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Notes
» Triangularization by computing Ritt-Wu characteristic Computability

sets, or euclidean division in some rational field, or using
Groebner basis.

» solving the triangular system by using the algorithm for
computing roots of polynomials in K[X].

» of course, there are better algorithms to factorize
polynomials (Kronecker, Berlekamp,
Cantor-Zassenhaus, Wang for algebraic extensions of Q)
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Theorem Computability
Let K C F be a field extension and . be an element of F. If
K is RP-computable, K(u) is RP-computable too.

Corollary

With the same notations, there is a factorization algorithm
for K(u)[X]
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Theorem

« is RC-constructible iff there is a sequence al,...ax = « :
Such that [Q(al) : Q] _ 2 and Lebesgue’s method
[Q(it1,--.a1): Qay,...c1] =2

Theorem

Let P(X) be an irreducible polynomial in K[X] (K being an
algebraic extension of Q); if P(X) = 0 is solvable using
square roots then there is some r € K such that P(X) is
decomposable on K(+/r).



Use

Let P(X) be an irreducible polynomial on K, let's try to find
r and to factorize P.

If Q(X) is such a factor, we have (m; € K, r € K):
QX)) = Xk m X 1 my (i XK my)

by euclidean division: P(X) = Q(X)T(X) + R(X) with

R(X) = (Ao(m, ..., mou, r)+/rBo(my,. .., mog, r)) X< 14

.+ Ak—l(mla ey Moy, r) + \ﬁBk—l(mla ey Moy, r)

where each A; and B; belong to K[m1, ..., myy,r].
Moreover R(X) should be the null polynomial.
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This leads to solve the algebraic system (Sp):

( Ao(ml,...,mgk,r) =0
. Lebesgue's method
Akfl(ml, ey Moy, r) =0
Bo(mi,...,myk,r) =0
Bk_l(ml, ey, Moy, r) =0
(mk+1 — 1)(mk+2 — ].) e (m2k - 1) =0

where the unknowns my,..., my et r are to be solved in K.
Solving Sp uses triangularization and the algorithm for
finding roots in K.
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» If there is no solution, P(X) is not decomposable and
the process ends. ettt i

> If there is a solution for Sp, when polynomial P(X) can
be decomposed, and the process recursively goes on on
each factor taking Q(+/r) for K.

» at the end, either polynomial is totally split (and we
have a characterization of its splitting field), or the
polynomial is not decomposable.
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Revealing the cheater

| was very imprecise when talking about Wu's method in
geometric proof or triangulation.

What | said

» Roughly speaking, a theorem of the form H = g is
stated by

» g belongs to \/(H), or
> V(H)C V(g)

Actually (Chou)

For most geometry theorems, some hypothesis are
des-equality specifying degenerate cases:

>y €EEh =0A...hy=0As;#0...5#0=>g=0
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Triangularization by computing Ritt-Wu characteristic sets.

More precisely (Ritt-Wu and Chou)

Given a finite set of polynomials {hy,...hy}, its zero-set

can be decomposed into irreducible components (V(P;) U

L VPO)YU V(P ... V(PE)) U (V(P)U... V(P)) Ritt-Wu's principle
(some of them correspond to degenerate cases)

Consequences

> It leads to a more complex notion of the validity of a
theorem: it can be true in one component and false on
another one

» when one want to solve a construction system,
triangularization cannot be just the simple Chou
method and, moreover, it leads to more than one
irreducible triangular system.



Examples

o
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Statement. Construct a triangle given the length p; of side

BC, and the lengths of the altitudes from A (p2) and B (p3).
Parametrization: B(0,0), C(p1,0), A(x1,x2). We have the

equations:

f1: x22 — p% =0 construction
f:p2xs — p3((a — p1)* +3)

We get 2 irreducible characteristic sets:

g1 = 2p3x1p1 — P3X{ — P3P; — P3P3

82(83) = x2 £ p2
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it leads to four solutions (2 up to symmetries):

—2p3p1 £ 2pap3y/ 7 — P3

X1 = — X —=
1 2p§ , X2 = P2
—2p3p1 & 2p2p3y/pP? — P3
X1 = — Xo — —
1 2p§ , X2 P2

The straightedge and compass construction can be
automatically deduced from this ... but it is not very
interesting.
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Statement. Given two parallel lines D and D’, and three
points: Aon D, B on D' and C. Construct a line A passing
through C and cutting D in E and D’ in F such that
AE + BF equals the given length p;.
‘ D

B F
}A 3 D
cS A .
B(0,0), D' = Ox o
A(p2, p3), C(pa, ps), E(x1, x2), F(x3, xa)
We get:

fi:xa=0

hixo—p3=0

f: (2 = ps) (s — pa) — (51 — pa) (s — ps) = 0

fa : ((Xl —p2)?+ (20— p3)? + X3 +x7 — p%)z — 4(xy — po)?
—4(x — p3)® — 4x3 — 4x7 =0



Geometric

A successful resolution (2) continued Construcety

Pascal Schreck

We have only one irreducible component, and the solving
gives x1 = S1 + Sp, avec

si=Z s ==, et
u=8p3 +8p3\/1+ p; — 4p3p; + 4p3pi + 8psp3pap2 —
32psp3 + 8p3pips — 32p3ps /1 + pi — 16psp3pt — 4paps —

16p3 p3pap2 + 56p3p3 + 28p3p3p7 + 56p3p3/1 + P —

4p3p2p? + 8pEp3ps + 8pEpspaps — 48pEps — 24pEpsp? —

48p3p§\ /1+ pf + 16p§8p§p% + 16p§'\ /1 + pf — 4p§'p§.
v =2p3 — 4p3ps + 4p3

q = —4pap3ps — 28p2p2p3 + 24p3paps — 8papaps +
8pap3ps + 16pspap3 — 8pip2 — 4paps

r= 16p§1 — 16p5p§ + 4p§1 — 32p§’p3 + 32p§p§

construction
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| just checked problem #90 of Wernick list (I thought that it
had no status according to Meyer, but it is known as
unsolvable after Vesna and Predrag paper)

In this problem, we know incenter /, midpoints M, and M,.
Putting / at (0,0) and M, at (1,0) we get the two equations:

£ (2% yA — 2 % yMb)? + (2 % xA — 2 % xMb)?) * (2 % xA x yMb — (2  xMb — 2) * yA)?

—(—xA % (2 % yMb — 2 % yA) — (2 % XA — 2 % xMb) * yA)? % (4 x yMb? + (2 % xMb — 2)?) = 0 Ut ity
fy + (4x(yA—25yMb)?+ (2% (— 2xMb+xA+2) —2)? ) (— 2 ( — 25 xMb+xA+2) k yMb— (2— 25 xMb) x (yA— 2 yMb))?

— (2#(— 2% xMb+xA+2) % (yA— 2% yMb) — (25 (— 2% xMb-+xA+2) — 2) % (yA— 2% yMb))? (4 yMb® + (24 xMb—2)?) = 0

Each of degree 4 with respect to yA.

Trying eliminate yA by simple Chou 's algorithm, we get only
one equation!

Either the triangularization fails, or the status of the problem
is L
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In fact, there is a common factor to the two equation
corresponding to the degenerate case. Using the factor
command of Maxima, we have:

fi o (xMb — 1) % yA3 + (=2 % xMb — xA + 1) * yMb * yA?
+(2xxAxyMb? — 2 xAx xMb?+ (xA2 + 2% xA) x xMb— xA?) x yA
+(2 xA2 % xMb — xA3 — XA2) xyMb =10

and

fa : (—xMb + 1) % yA3 + (4 x xMb + xA — 3) * yMb x yA?
+((—4 * xMb — 4 % xA) x yMb?> — 4 x xMb3 + (4 * xA + 8) x
XMB? + (—xA% — 6 % xA — 4) % xMb + xA? 4 2 % xA) * yA
+(4 % xA 4 4) % yMb3 + ((4 % XA + 4) x xMb? + (—4 % xA% —
8 % XA — 8) x xMb + xA3 + 3 % xA? + 4 x xA + 4) x yMb = 0

Unconstructibility



by simple triangularization (degree 5 wrt xA
((—32% xMb+32) 5 yMb® + (— 96 % xMb> + 288 + xMb> — 288 % xMb+96)  yMb + (—96 % xMb® + 480 *
xMb* — 960 x xMb3 + 960 % xMb? — 480 x xMb+96) % yMb® + (—32 % xMb' +224 % xMb® — 672 % xMb> +
1120 % xMb* — 1120 % xMb> + 672 % xMb? — 224 5 xMb + 32) % yMb®)  xAS + ((256 + xMb> — 608  xMb +
352) % yMb® + (768 % xMb* — 3072+ xMb> +4608  xMb? — 3072 % xMb+768)  yMb + (768 + xMb°® — 4320
xMBb® +10080 % xMb* — 12480 % xMb> + 8640 5 xMb? — 3168 * xMb+480) + yMb + (256 * xMb® — 1856 *
xMb" + 5824 % xMb® — 10304 % xMb® + 11200 * xMb* — 7616  xMb> + 3136 x xMb? — 704 % xMb + 64) *
yMb3) s xA* + ((—768% xMb3 +2688 5 xMb? — 3072% xMb+1152) s yMb? + (— 2304 % xMb° +11136+xMb* —
21888 % xMb> + 21888 % xMb? — 11136 % xMb +2304) x yMb + (—2304 % xMb’ + 14208 % xMb5 — 37632 *
xMb® 455680 % xMb* — 499205 xMb3 27264 xMb? — 8448  xMb-+1152) % yMb® 4 (— 768 xMb° + 5760 *
xMBb® — 18816 % xMbT 434944 x xMb® — 40320 % xMb® +29568 % xMb* — 13440+ xMb° 3456+ xMb? — 384 x
xMb) % yMb3) 5 xA3 + ((1024 % xMb* — 4608  xMb> + 7808 % xMb? — 5760 « xMb+1536) * yMb°® + (3072 %
xMBS — 17152 % xMb® 4 41472 % xMb* — 55296 % xMb> + 42496 x xMb? — 17664 + xMb +3072) * yMb' +
(30725 xMb® — 20480 5 xMb' +60544 5 xMb® — 104576 5 xMb° + 116480 5 xMb* — 86272 5 xMb> +41600 *
xMb? — 11904  xMb + 1536) + yMb® + (1024 % xMb*0 — 7936 % xMb® + 26880 * xMb® — 51968 x xMb” +
62720 % xMbO — 483845 xMb° +23206 % xMb* — 64005 xMb3 + 768 % xMb? ) % yMb3 ) 5 xA? +((— 128 % xMb+
128) % yMb' 1+ (—512% xMb> 43072 % xMb* — 7552 % xMb® +9088  xMb? — 5248 x xMb+1152) % yMb® +
(—1536 % xMb +10240 % xMb® — 31104 % xMb> 454656 + xMb* — 58624 + xMb> +37632 % xMb? — 13184 %

xMb+1920) s yMb + (—1536 5 xMb° + 11264 5 xMb® — 38016 xMb +78464 x xMb® — 109696 +xMb°~+
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We can take the specific example with Mb(—2, 3) since we
want to prove the non-RC-constructibility of triangle ABC.
We get, after simplification

P:

25 xA® 4455 xA* + 372 xA3 4 13685 xA% +2160+ xA+972 = 0

Either P is irreducible (and then we have proved

RC-unconstructibility since degree of xA is not a power of 2) Unconstructibility
or we can decompose it: since it has no rational root (I

checked) the factors has resp. degree 2 and 3.

Actually, Maxima is powerful enough to prove that P is
irreducible. But we can apply the Lebesgue’'s method since it
was the goal of the speech.

(once again, my apologies, | had no time to take another
example).
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So, P(X) has no root in Q. We consider all the cases:
1. P(X) is irreducible (then it's ok)
2. P(X) is decomposable: P = QR with deg(Q) = 3 and
deg(R) = 2. and we have to consider either Q or R as
the minimal polynomial of xA.
» Q(X) is irreducible (since P(X) has no root in Q), so if G
Q is the minimal polynomial of xA, its ok
» R is irreducible, so applying the Lebesgue's method, we
have to find a root in Q.



Replacement xA = a + Vb

Vb x (2% b? + (20 % a®> + 180 * a + 372) * b4 10 * a* + 180 *
a3 + 1116 x 2> + 2736 * a + 2160)

(10 % a +45) * b2 4 (20 % a3 + 270 % 2° + 1116 * a + 1368) *
b+ 2% 2%+ 45 a* + 372 % a3 + 1368 * 2% + 2160 * a + 972
=0

Then, we should have:

2% b%+ (20 a®> + 180 % a+372) x b+ 10 % a* + 180 % a° +
1116 % 2% + 2736 x a + 2160 = 0

and:

(10%a+45) % b? + (20 % a3 +270 % 2> + 1116+ a+ 1368) * b+
2%a® +45%a* +372% a3 +1368 % a> +2160xa+ 972 =0

Geometric
constructibility
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(at last)



continued again

Using triangularization and eliminating b, we get:
256%al0+11520%a° +230112%a®+2685168%a’ +20253753 *
a% + 103083246 * a° + 358125840 * a* + 837646920 * a3 +
1261104147 % a® + 1102911390 * a + 425668932 = 0

to solve in Q. We consider all the possibilities g :
with g dividing 256 = 28 (or 2°)

and p dividing 425668932 = 22 % 37 % 13 % 19 % 197 (or
37 %13 % 19 % 197

It is tedious but easy to verify this.
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