RC-(un)constructibility, proofs and constructions

Pascal Schreck

Université de Strasbourg - LSIIT, UMR CNRS 7005
12-12-12

Introduction

- This approach has some interest in CAD domain (and some drawbacks to be fair).
- The ingredients used are very similar to those used in proof in geometry.
- I take here the example of algebra by presenting Lebesgue's method.

Exact solution

Given a $\forall \exists$ problem an exact solution is

- a symbolic object ...
- and a proof that it fulfills the specifications

Examples (outside of geometry)

- for all integer x, there is an integer y such that $x+y=5$
- for all list L , there is a sorted list L' containing exactly the same elements

A formal framework is needed

- to express the specification;
- to define the tools to perform the proof;
- (possibly) to construction the symbolic solution

RC-constructible numbers

- For the ancient Greeks, the set of the RC-constructible numbers + euclidean geometry was such a fundamental framework.
- Classical definition through the notions of points, lines and circles RC-constructible.
- But RC-constructible numbers can also be defined through constructible operations:
- addition, subtraction;
- multiplication, division;
- square radical.
- There are famous unconstructibility issues.
some frameworks and problems

Mathematical results

Proofs

Different kinds of proof

- high level geometry
- logic and foundations
- combinatoric
- algebraic:Wu's method, Ritt-Wu principle.

In this talk, I will focus on the last point.
Wu's method roughly speaking

- translation from geometry to algebra
- "triangularization" of the system corresponding to the hypothesis
- successive pseudo-divisions of the goal by the hypothesis

Wu's method and algebra

- Roughly speaking, a theorem of the form $H \Rightarrow g$ is stated by
- g belongs to $\sqrt{\langle H\rangle}$, or
- $V(H) \subset V(g)$
- The point of the Ritt-Wu principle is precisely to characterize the Zero-set of a set of polynomials.
- It is then no surprising that the Ritt-Wu principle is also useful in (geometric) constraint satisfaction

In the following, I present a method mixing the Ritt-Wu's principle and the Lebesgue's method to exactly solve polynomial systems corresponding to RC-problems.

Lebesgue's method

Mathematical results

Definition (RC-constructible from O and I)
A real is RC-constructible iff it is a coordinate of a RC-constructible point in the plane.

Theorem (Wantzel 1837)
Each RC-constructible number is algebraic over \mathbb{Q} and its degree is equal to 2^{k} for some $k \in \mathbb{N}$

Notes

- the converse is false: one of the roots of $X^{4}-X-1$ is not RC-constructible.
- this thm was used for famous impossibility theorems
- base of the theorem: "if $P \in \mathbb{Q}[X]$ with degree 3 has no rational root, then its roots are not RC-constructible"

Mathematical results (continued)

Theorem (Gallois ~1870)
Let α be an algebraic number over $\mathbb{Q}, P(X)$ be its minimal polynomial and K be the splitting field of $P(X)$.
α is $R C$-constructible iff $[K: \mathbb{Q}]=2^{k}$ for some $k \in \mathbb{N}$.

Notes

- Wantzel: RC-constructibility $\Rightarrow[R: \mathbb{Q}]=2^{\prime}$ with $R=$ rupture field of P
- Gallois: RC-constructibility $\Leftrightarrow[K: \mathbb{Q}]=2^{k}$
- Wantzel's result can prove unconstructibility, but not constructibility result.

Mathematical results (continued)

Galois's result and Lebesgue's method

- using Galois's result one can prove that α is RC-constructible iff it exists a sequence of fields L_{0}, \ldots, L_{k} such that $L_{0}=\mathbb{Q},\left[L_{i+1}: L_{i}\right]=2$ and $\alpha \in L_{k}$.
- Lebesgue compute the splitting field of an irreducible polynomial (with degree 2^{k}) by using a polynomial so called Galois's resolvent (with degree (2^{k})!)

Theorem (Chen-Carrayol 1992)
Let α be an algebraic number over \mathbb{Q}, α is $R C$-constructible iff there is a sequence of fields L_{0}, \ldots, L_{k} such that $L_{0}=\mathbb{Q}$, $\left[L_{i+1}: L_{i}\right]=2$ and $L_{k}=\mathbb{Q}[\alpha]$.
Then the minimal polynomial of α is decomposable on L_{1}.

About computability

Definition (computable filed)
A field $(K,+, *)$ is computable if the operations,,$+- *$ and / are computable

Definition (RP-computability)
A field $(K,+, *)$ is RP-computable if it is computable and there is an algorithm to compute the roots in K for every polynomials $P \in K[X]$.

Examples

- finite fields
- \mathbb{Q}

Factorization

Theorem

A field K is $R P$-computable iff there is a factorization algorithm in $K[X]$.
Sketch of the proof: (\Leftarrow is obvious)

* \Rightarrow :

Let $X^{k}+a_{1} X^{k-1}+\ldots a_{k_{1}} X+a_{k}$ be a factor of $P(X)$. By euclidean division we have:

$$
P(X)=Q(X)\left(X^{k}+a_{1} X^{k-1}+\ldots a_{k_{1}} X+a_{k}\right)+R(X)
$$

with $R(X)=0$ and each coeff r_{i} of R belongs to $K\left[a_{1}, \ldots a_{k}\right]$.

$$
\left\{\begin{array} { l }
{ r _ { k - 1 } (a _ { 1 } , \ldots , a _ { k }) = 0 } \\
{ \ldots } \\
{ r _ { 0 } (a _ { 1 } , \ldots , a _ { k }) = 0 }
\end{array} \text { giving } \quad \left\{\begin{array}{l}
r_{k-1}^{\prime}\left(a_{1}\right)=0 \\
\ldots \\
r_{0}^{\prime}\left(a_{1}, \ldots, a_{k}\right)=0
\end{array}\right.\right.
$$

Factorization (continued)

Notes

- Triangularization by computing Ritt-Wu characteristic sets, or euclidean division in some rational field, or using Groebner basis.
- solving the triangular system by using the algorithm for computing roots of polynomials in $K[X]$.
- of course, there are better algorithms to factorize polynomials (Kronecker, Berlekamp, Cantor-Zassenhaus, Wang for algebraic extensions of \mathbb{Q})

RP-computability and field extension

Theorem
Let $K \subset F$ be a field extension and μ be an element of F. If K is $R P$-computable, $K(\mu)$ is $R P$-computable too.

Corollary
With the same notations, there is a factorization algorithm for $K(\mu)[X]$

Recall

Exact solution
some frameworks and problems

Mathematical results
Computability
Lebesgue's method

Use

Let $P(X)$ be an irreducible polynomial on K, let's try to find r and to factorize P.

If $Q(X)$ is such a factor, we have ($m_{i} \in K, r \in K$):
$Q(X)=X^{k}+m_{1} X^{k-1}+\ldots+m_{k}+\sqrt{r}\left(m_{k+1} X^{k-1}+\ldots+m_{2 k}\right)$ by euclidean division: $P(X)=Q(X) T(X)+R(X)$ with

$$
\begin{gathered}
R(X)=\left(A_{0}\left(m_{1}, \ldots, m_{2 k}, r\right)+\sqrt{r} B_{0}\left(m_{1}, \ldots, m_{2 k}, r\right)\right) X^{k-1}+ \\
\quad \ldots+A_{k-1}\left(m_{1}, \ldots, m_{2 k}, r\right)+\sqrt{r} B_{k-1}\left(m_{1}, \ldots, m_{2 k}, r\right)
\end{gathered}
$$

where each A_{i} and B_{j} belong to $K\left[m_{1}, \ldots, m_{2 k}, r\right]$. Moreover $R(X)$ should be the null polynomial.

Use (continued)

This leads to solve the algebraic system $\left(S_{0}\right)$:

$$
\left\{\begin{array}{l}
A_{0}\left(m_{1}, \ldots, m_{2 k}, r\right)=0 \\
\ldots \\
A_{k-1}\left(m_{1}, \ldots, m_{2 k}, r\right)=0 \\
B_{0}\left(m_{1}, \ldots, m_{2 k}, r\right)=0 \\
\ldots \\
B_{k-1}\left(m_{1}, \ldots, m_{2 k}, r\right)=0 \\
\left(m_{k+1}-1\right)\left(m_{k+2}-1\right) \ldots\left(m_{2 k}-1\right)=0
\end{array}\right.
$$

Exact solution
some frameworks and problems

Mathematical results
Computability
Lebesgue's method
where the unknowns $m_{1}, \ldots, m_{2 k}$ et r are to be solved in K. Solving S_{0} uses triangularization and the algorithm for finding roots in K.

Use (continued)

- If there is a solution for S_{0}, when polynomial $P(X)$ can be decomposed, and the process recursively goes on on each factor taking $\mathbb{Q}(\sqrt{r})$ for K.
- at the end, either polynomial is totally split (and we have a characterization of its splitting field), or the polynomial is not decomposable.

Ritt-Wu's principle

introduction

Exact solution
some frameworks and problems

Lebesgue's method
Mathematical results Computability
Lebesgue's method
Ritt-Wu's principle

Examples

construction
Unconstructibility
Lebesgue's method (at last)

Revealing the cheater

I was very imprecise when talking about Wu's method in geometric proof or triangulation.
What I said

- Roughly speaking, a theorem of the form $H \Rightarrow g$ is stated by
- g belongs to $\sqrt{\langle H\rangle}$, or
- $V(H) \subset V(g)$

Actually (Chou)

For most geometry theorems, some hypothesis are des-equality specifying degenerate cases:

- $\forall y \in E . h_{1}=0 \wedge \ldots h_{n}=0 \wedge s_{1} \neq 0 \ldots s_{k} \neq 0 \Rightarrow g=0$

Revealing the cheater (continued)

Triangularization by computing Ritt-Wu characteristic sets.
More precisely (Ritt-Wu and Chou)
Given a finite set of polynomials $\left\{h_{1}, \ldots h_{m}\right\}$, its zero-set can be decomposed into irreducible components $\left(V\left(P_{1}^{*}\right) \cup\right.$ $\left.\ldots V\left(P_{c}^{*}\right)\right) \cup\left(V\left(P_{1}^{+}\right) \ldots V\left(P_{e}^{+}\right)\right) \cup\left(V\left(P_{1}\right) \cup \ldots V\left(P_{t}\right)\right)$
(some of them correspond to degenerate cases)

Consequences

- It leads to a more complex notion of the validity of a theorem: it can be true in one component and false on another one
- when one want to solve a construction system, triangularization cannot be just the simple Chou method and, moreover, it leads to more than one irreducible triangular system.

Examples

Introduction

Exact solution
some frameworks and problems

Lehesgue's method
Mathematical results Computability
Lebesgue's method

Ritt-Wu's principle

Examples

construction
Unconstructibility
Lebesgue's method (at last)

A successful resolution (1) (Chen)

 equations:$f_{1}: x_{2}^{2}-p_{2}^{2}=0$
$f_{2}: p_{1}^{2} x_{2}^{2}-p_{3}^{2}\left(\left(x_{1}-p_{1}\right)^{2}+x_{2}^{2}\right)$
We get 2 irreducible characteristic sets:

$$
\begin{aligned}
& g_{1}=2 p_{3}^{2} x_{1} p_{1}-p_{3}^{2} x_{1}^{2}-p_{3}^{2} p_{1}^{2}-p_{2}^{2} p_{3}^{2} \\
& g_{2}\left(g_{3}\right)=x_{2} \pm p_{2}
\end{aligned}
$$

A successful resolution (1) continued

it leads to four solutions (2 up to symmetries):

$$
\begin{aligned}
& x_{1}=-\frac{-2 p_{3}^{2} p_{1} \pm 2 p_{2} p_{3} \sqrt{p_{1}^{2}-p_{3}^{2}}}{2 p_{3}^{2}}, x_{2}=p_{2} \\
& x_{1}=-\frac{-2 p_{3}^{2} p_{1} \pm 2 p_{2} p_{3} \sqrt{p_{1}^{2}-p_{3}^{2}}}{2 p_{3}^{2}}, x_{2}=-p_{2}
\end{aligned}
$$

The straightedge and compass construction can be automatically deduced from this ... but it is not very interesting.

A successful resolution (2) continued

Statement. Given two parallel lines D and D^{\prime}, and three points: A on D, B on D^{\prime} and C. Construct a line Δ passing through C and cutting D in E and D^{\prime} in F such that $A E+B F$ equals the given length p_{1}.

$$
\begin{aligned}
& B(0,0), D^{\prime}=O x \\
& A\left(p_{2}, p_{3}\right), C\left(p_{4}, p_{5}\right), E\left(x_{1}, x_{2}\right), F\left(x_{3}, x_{4}\right)
\end{aligned}
$$

We get:
$f_{1}: x_{4}=0$
$f_{2}: x_{2}-p_{3}=0$
$f_{3}:\left(x_{2}-p_{5}\right)\left(x_{3}-p_{4}\right)-\left(x_{1}-p_{4}\right)\left(x_{4}-p_{5}\right)=0$
$f_{4}:\left(\left(x_{1}-p_{2}\right)^{2}+\left(x_{2}-p_{3}\right)^{2}+x_{3}^{2}+x_{4}^{2}-p_{1}^{2}\right)^{2}-4\left(x_{1}-p_{2}\right)^{2}$ $-4\left(x_{2}-p_{3}\right)^{2}-4 x_{3}^{2}-4 x_{4}^{2}=0$

A successful resolution (2) continued

We have only one irreducible component, and the solving gives $x_{1}=s_{1}+s_{2}$, avec
$s_{1}=\sqrt{\frac{u}{v}}, s_{2}=\frac{-q}{r}$, et
$u=8 p_{3}^{4}+8 p_{3}^{4} \sqrt{1+p_{1}^{2}}-4 p_{3}^{4} p_{4}^{2}+4 p_{3}^{4} p_{1}^{2}+8 p_{5} p_{3}^{3} p_{4} p_{2}-$
$32 p_{5} p_{3}^{3}+8 p_{3}^{3} p_{4}^{2} p_{5}-32 p_{3}^{3} p_{5} \sqrt{1+p_{1}^{2}}-16 p_{5} p_{3}^{3} p_{1}^{2}-4 p_{5}^{2} p_{2}^{2}-$
$16 p_{5}^{2} p_{3}^{2} p_{4} p_{2}+56 p_{5}^{2} p_{3}^{2}+28 p_{5}^{2} p_{3}^{2} p_{1}^{2}+56 p_{3}^{2} p_{5}^{2} \sqrt{1+p_{1}^{2}}-$
$4 p_{3}^{2} p_{4}^{2} p_{5}^{2}+8 p_{5}^{3} p_{2}^{2} p_{3}+8 p_{5}^{3} p_{3} p_{4} p_{2}-48 p_{5}^{3} p_{3}-24 p_{5}^{3} p_{3} p_{1}^{2}-$
$48 p_{3} p_{5}^{3} \sqrt{1+p_{1}^{2}}+16 p_{5}^{4} 8 p_{5}^{4} p_{1}^{2}+16 p_{5}^{4} \sqrt{1+p_{1}^{2}}-4 p_{5}^{4} p_{2}^{2}$,
$v=2 p_{3}^{2}-4 p_{3} p_{5}+4 p_{5}^{2}$
$q=-4 p_{4} p_{3}^{3} p_{5}-28 p_{5}^{2} p_{2} p_{3}^{2}+24 p_{5}^{3} p_{2} p_{3}-8 p_{4} p_{3} p_{5}^{3}+$ $8 p_{4} p_{3}^{2} p_{5}^{2}+16 p_{5} p_{2} p_{3}^{3}-8 p_{5}^{4} p_{2}-4 p_{2} p_{3}^{4}$
$r=16 p_{5}^{4}-16 p_{5} p_{3}^{3}+4 p_{3}^{4}-32 p_{5}^{3} p_{3}+32 p_{5}^{2} p_{3}^{2}$

A proof of unconstructibility

I just checked problem \#90 of Wernick list (I thought that it had no status according to Meyer, but it is known as unsolvable after Vesna and Predrag paper)
In this problem, we know incenter I, midpoints M_{a} and M_{b}. Putting I at $(0,0)$ and M_{a} at $(1,0)$ we get the two equations:

$$
\begin{aligned}
& f_{1}:\left((2 * y A-2 * y M b)^{2}+(2 * x A-2 * x M b)^{2}\right) *(2 * x A * y M b-(2 * x M b-2) * y A)^{2} \\
& \quad-(-x A *(2 * y M b-2 * y A)-(2 * x A-2 * x M b) * y A)^{2} *\left(4 * y M b^{2}+(2 * x M b-2)^{2}\right)=0
\end{aligned}
$$

$f_{2}:\left(4 *(y A-2 * y M b)^{2}+(2 *(-2 * x M b+x A+2)-2)^{2}\right) *(-2 *(-2 * x M b+x A+2) * y M b-(2-2 * x M b) *(y A-2 * y M b))^{2}$
$-(2 *(-2 * x M b+x A+2) *(y A-2 * y M b)-(2 *(-2 * x M b+x A+2)-2) *(y A-2 * y M b))^{2} *\left(4 * y M b^{2}+(2 * x M b-2)^{2}\right)=0$
Each of degree 4 with respect to $y A$.
Trying eliminate $y A$ by simple Chou 's algorithm, we get only one equation!
Either the triangularization fails, or the status of the problem is L

A proof of unconstructibility (continued)

In fact, there is a common factor to the two equation corresponding to the degenerate case. Using the factor command of Maxima, we have:
$f_{1}:(x M b-1) * y A^{3}+(-2 * x M b-x A+1) * y M b * y A^{2}$
$+\left(2 * x A * y M b^{2}-2 * x A * x M b^{2}+\left(x A^{2}+2 * x A\right) * x M b-x A^{2}\right) * y A$
$+\left(2 * x A^{2} * x M b-x A^{3}-x A^{2}\right) * y M b=0$
and
$f_{2}:(-x M b+1) * y A^{3}+(4 * x M b+x A-3) * y M b * y A^{2}$
$+\left((-4 * x M b-4 * x A) * y M b^{2}-4 * x M b^{3}+(4 * x A+8) *\right.$
$\left.x M b^{2}+\left(-x A^{2}-6 * x A-4\right) * x M b+x A^{2}+2 * x A\right) * y A$
$+(4 * x A+4) * y M b^{3}+\left((4 * x A+4) * x M b^{2}+\left(-4 * x A^{2}-\right.\right.$
$\left.8 * x A-8) * x M b+x A^{3}+3 * x A^{2}+4 * x A+4\right) * y M b=0$

by simple triangularization (degree 5 wrt $x A$

$$
\begin{aligned}
& \left((-32 * x M b+32) * y M b^{9}+\left(-96 * x M b^{3}+288 * x M b^{2}-288 * x M b+96\right) * y M b^{7}+\left(-96 * x M b^{5}+480 *\right.\right. \\
& \left.x M b^{4}-960 * x M b^{3}+960 * x M b^{2}-480 * x M b+96\right) * y M b^{5}+\left(-32 * x M b^{7}+224 * x M b^{6}-672 * x M b^{5}+\right. \\
& \left.\left.1120 * x M b^{4}-1120 * x M b^{3}+672 * x M b^{2}-224 * x M b+32\right) * y M b^{3}\right) * x A^{5}+\left(\left(256 * x M b^{2}-608 * x M b+\right.\right. \\
& \text { 352) } * y M b^{9}+\left(768 * x M b^{4}-3072 * x M b^{3}+4608 * x M b^{2}-3072 * x M b+768\right) * y M b^{7}+\left(768 * x M b^{6}-4320 *\right. \\
& \left.x M b^{5}+10080 * x M b^{4}-12480 * x M b^{3}+8640 * x M b^{2}-3168 * x M b+480\right) * y M b^{5}+\left(256 * x M b^{8}-1856 *\right. \\
& \left.x M b^{7}+5824 * x M b^{6}-10304 * x M b^{5}+11200 * x M b^{4}-7616 * x M b^{3}+3136 * x M b^{2}-704 * x M b+64\right) * \\
& \left.y M b^{3}\right) * x A^{4}+\left(\left(-768 * x M b^{3}+2688 * x M b^{2}-3072 * x M b+1152\right) * y M b^{9}+\left(-2304 * x M b^{5}+11136 * x M b^{4}-\right.\right. \\
& \left.21888 * x M b^{3}+21888 * x M b^{2}-11136 * x M b+2304\right) * y M b^{7}+\left(-2304 * x M b^{7}+14208 * x M b^{6}-37632 *\right. \\
& \left.x M b^{5}+55680 * x M b^{4}-49920 * x M b^{3}+27264 * x M b^{2}-8448 * x M b+1152\right) * y M b^{5}+\left(-768 * x M b^{9}+5760 *\right. \\
& x M b^{8}-18816 * x M b^{7}+34944 * x M b^{6}-40320 * x M b^{5}+29568 * x M b^{4}-13440 * x M b^{3}+3456 * x M b^{2}-384 * \\
& \left.x M b) * y M b^{3}\right) * x A^{3}+\left(\left(1024 * x M b^{4}-4608 * x M b^{3}+7808 * x M b^{2}-5760 * x M b+1536\right) * y M b^{9}+(3072 *\right. \\
& \left.x M b^{6}-17152 * x M b^{5}+41472 * x M b^{4}-55296 * x M b^{3}+42496 * x M b^{2}-17664 * x M b+3072\right) * y M b^{7}+ \\
& \left(3072 * x M b^{8}-20480 * x M b^{7}+60544 * x M b^{6}-104576 * x M b^{5}+116480 * x M b^{4}-86272 * x M b^{3}+41600 *\right. \\
& \left.x M b^{2}-11904 * x M b+1536\right) * y M b^{5}+\left(1024 * x M b^{1} 0-7936 * x M b^{9}+26880 * x M b^{8}-51968 * x M b^{7}+\right. \\
& \left.\left.62720 * x M b^{6}-48384 * x M b^{5}+23296 * x M b^{4}-6400 * x M b^{3}+768 * x M b^{2}\right) * y M b^{3}\right) * x A^{2}+((-128 * x M b+ \\
& \text { 128) } * y M b^{1} 1+\left(-512 * x M b^{5}+3072 * x M b^{4}-7552 * x M b^{3}+9088 * x M b^{2}-5248 * x M b+1152\right) * y M b^{9}+ \\
& \left(-1536 * x M b^{7}+10240 * x M b^{6}-31104 * x M b^{5}+54656 * x M b^{4}-58624 * x M b^{3}+37632 * x M b^{2}-13184 *\right. \\
& x M b+1920) * y M b^{7}+\left(-1536 * x M b^{9}+11264 * x M b^{8}-38016 * x M b^{7}+78464 * x M b^{6}-109696 * x M b^{5}+\propto \curvearrowright\right. \\
& \text { Pascal Schreck } \\
& \text { some frameworks and } \\
& \text { problems } \\
& \text { Mathematical results } \\
& \text { Computability } \\
& \text { Lebesgue's method } \\
& \text { Examples } \\
& \text { construction } \\
& \text { Unconstructibility } \\
& \text { Lebesgue's method } \\
& \text { (at last) }
\end{aligned}
$$

Simplification

We can take the specific example with $M b(-2,3)$ since we want to prove the non-RC-constructibility of triangle $A B C$. We get, after simplification
P :
$2 * x A^{5}+45 * x A^{4}+372 * x A^{3}+1368 * x A^{2}+2160 * x A+972=0$

Either P is irreducible (and then we have proved RC-unconstructibility since degree of $x A$ is not a power of 2) or we can decompose it: since it has no rational root (l checked) the factors has resp. degree 2 and 3.
Actually, Maxima is powerful enough to prove that P is irreducible. But we can apply the Lebesgue's method since it was the goal of the speech.
(once again, my apologies, I had no time to take another example).

Preliminary

So, $P(X)$ has no root in \mathbb{Q}. We consider all the cases:

1. $P(X)$ is irreducible (then it's ok)
2. $P(X)$ is decomposable: $P=Q R$ with $\operatorname{deg}(Q)=3$ and $\operatorname{deg}(R)=2$. and we have to consider either Q or R as the minimal polynomial of $x A$.

- $Q(X)$ is irreducible (since $P(X)$ has no root in \mathbb{Q}), so if Q is the minimal polynomial of $x A$, its ok
- R is irreducible, so applying the Lebesgue's method, we have to find a root in \mathbb{Q}.

Replacement $x A=a+\sqrt{b}$

$\sqrt{b} *\left(2 * b^{2}+\left(20 * a^{2}+180 * a+372\right) * b+10 * a^{4}+180 *\right.$ $\left.a^{3}+1116 * a^{2}+2736 * a+2160\right)$
$+(10 * a+45) * b^{2}+\left(20 * a^{3}+270 * a^{2}+1116 * a+1368\right) *$ $b+2 * a^{5}+45 * a^{4}+372 * a^{3}+1368 * a^{2}+2160 * a+972$ $=0$
Then, we should have:
$2 * b^{2}+\left(20 * a^{2}+180 * a+372\right) * b+10 * a^{4}+180 * a^{3}+$ $1116 * a^{2}+2736 * a+2160=0$ and:

$$
\begin{aligned}
& (10 * a+45) * b^{2}+\left(20 * a^{3}+270 * a^{2}+1116 * a+1368\right) * b+ \\
& 2 * a^{5}+45 * a^{4}+372 * a^{3}+1368 * a^{2}+2160 * a+972=0
\end{aligned}
$$

continued again

Using triangularization and eliminating b, we get: $256 * a^{1} 0+11520 * a^{9}+230112 * a^{8}+2685168 * a^{7}+20253753 *$ $a^{6}+103083246 * a^{5}+358125840 * a^{4}+837646920 * a^{3}+$ $1261104147 * a^{2}+1102911390 * a+425668932=0$ to solve in \mathbb{Q}. We consider all the possibilities $\frac{p}{q}$: with q dividing $256=2^{8}$ (or 2^{6})
and p dividing $425668932=2^{2} * 3^{7} * 13 * 19 * 197$ (or $3^{7} * 13 * 19 * 197$

It is tedious but easy to verify this.

Some questions?

Introduction

Exact solution
some frameworks and problems

Lebesgue's method

Mathematical results

Computability

Lebesgue's method

Ritt-Wu's principle

Examples

construction
Unconstructibility

